Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers
"> Figure 1
<p>KwaZulu-Natal province of South Africa with one of the Landsat ETM+ WELD composites (December 2011).</p> "> Figure 2
<p>Overview of the Landsat Automated Land Cover Update Mapping (LALCUM) system. The dashed polygons indicate the components responsible for five steps of the process.</p> "> Figure 3
<p>EKZNW land cover map for area surrounding Lake St. Lucia, iSimangaliso Wetland Park—World Heritage site, 2011 (<b>a</b>) and the land cover produced by the LALCUM system (<b>b</b>).</p> "> Figure 4
<p>EKZNW land cover map for area surrounding Greytown, 2011 (<b>a</b>) and land cover produced by the LALCUM system (<b>b</b>).</p> "> Figure 5
<p>EKZNW land cover map for area surrounding Winterton, 2011 (<b>a</b>) and land cover produced by the LALCUM system (<b>b</b>).</p> "> Figure 6
<p>Oblique photograph taken during airborne validation illustrating the complex mosaic of low density, small dwellings within the “Low density settlements” land cover class, interspersed by small fields of active and fallow “Cultivation subsistence drylands”, as well as “Plantations”. (Photo credit: John Craige, Ezemvelo KZN Wildlife).</p> "> Figure 7
<p>Overall accuracy of Random Forest classification after simulating additional mislabeled training samples in addition to the 20% error contained in the original EKZNW land cover maps on which it was trained.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Existing Land Cover Maps for 2008 and 2011
2.3. Landsat ETM+ Monthly WELD Composites
2.4. Landsat-Derived Metrics for 2008 and 2011
2.5. Ancillary Data
3. Methods
3.1. Overview of Land Cover Mapping System
- The Iteratively Reweighted Multivariate Alteration Detection (IRMAD) change detection was applied to 2008 and 2011 image pairs to generate a spatially explicit 30 m 2008 to 2011 change mask. Function of Mask (FMASK) cloud detection was applied before the IRMAD change detection [64].
- Explanatory variables, i.e., monthly Landsat ETM+ WELD NDVI-ranked metrics (Section 2.4) (2011) and the ancillary data (Section 2.5), were prepared for all the study area at 30 m pixel resolution.
- Training data were derived by systematically sampling the 2008 EKZNW 30 m land cover map either with or without applying the 2008–2011 IRMAD change mask (Section 3.5. Classification experiments). The pixel samples were distributed systematically across the 2008 EKZNW 30 m land cover map following an area proportional allocation [65], but with additional allocation for very rare classes. At each selected pixel location a training sample defined by the 2008 EKZNW land cover class as the response variable, and the 2011 WELD and ancillary data as the explanatory variables, were extracted. The training data were independently derived in this manner ten times.
- The ten sets of training data were used to independently generate ten random forest (RF) models. The RF models were applied to every 30 m pixel of the 2011 explanatory variables to generate ten land cover maps for 2011. As there was very limited variability between the accuracies of the 10 RF models, one of the RF models were randomly chosen to produce the LALCUM map output for either 2008 or 2011.
- Independent validation of the classification accuracy of each of the ten 2011 land cover maps was undertaken by comparison with the pre-existing 2011 EKZNW land cover map, whilst excluding land cover polygons from which training data were extracted (Section 3.4.1 Accuracy Assessment—Map comparison).
3.2. 2008 to 2011 Change Detection and Validation
3.3. Random Forest Implementation
3.4. Classification Accuracy Assessment
3.4.1. Map Comparison
3.4.2. Airborne Validation
3.5. Classification Experiments
- Generate 2008 land cover with 2008 Landsat images and 2008 land cover labels (control).
- Generate 2011 land cover with 2011 Landsat images and 2011 land cover labels (control).
- Generate 2011 land cover with 2011 Landsat images and 2008 land cover labels after applying a 2008–2011 change mask. The system configuration for treatment 3 is given in Figure 2.
- Generate 2011 land cover with 2011 Landsat images and 2008 land cover labels with no change mask applied (excluding Step 1, Figure 2).
4. Results
4.1. Change Detection Validation
4.2. Accuracy Assessment—Map Comparison
4.3. Accuracy Assessment—Airborne Validation
4.4. System Processing Time Evaluation
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
EKZNW Aggregated Land Cover Class Names | NGI-LCCS Level 1 Class Name | LCCS Level 2 Class Name |
---|---|---|
Water | Natural Non-Vegetated Aquatic or Regularly Flooded Water Bodies | water |
Plantation | Cultivated and Managed Terrestrial Primary Vegetated Areas | Needle leaved (default) |
Plantation—clearfelled | Cultivated and Managed Terrestrial Primary Vegetated Areas | Broad Leaved Bushes and Shrubs |
Wetland | Natural or Semi-Natural Aquatic or Regularly Flooded Vegetated Areas | Herbaceous |
Wetland—mangrove | Natural or Semi-Natural Aquatic or Regularly Flooded Vegetated Areas | Woody Wetlands |
Orchards—trees | Cultivated and Managed Terrestrial Primary Vegetated Areas | Broad leaved evergreen (default) |
Sugarcane | Cultivated and Managed Terrestrial Primary Vegetated Areas | Herbaceous Graminoids |
Mines and Quarries | Artificial Terrestrial Primarily Non-Vegetated Areas | Non-Built-up Artificial Bare Area |
Built-up/dense settlement | Artificial Terrestrial Primarily Non-Vegetated Areas | Built-up Urban/Residential Areas |
Low density settlements | Artificial Terrestrial Primarily Non-Vegetated Areas | Built-up Urban/Residential Areas |
Cultivation, subsistence, dryland | Cultivated and Managed Terrestrial Primary Vegetated Areas | Herbaceous Graminoids (default) |
Cultivation, commercial, annual crops, dryland | Cultivated and Managed Terrestrial Primary Vegetated Areas | Herbaceous Graminoids (default) |
Cultivation—irrigated | Cultivated and Managed Terrestrial Primary Vegetated Areas | Herbaceous Graminoids (default) |
Forest (indigenous) | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Trees |
Dense thicket and bush (70% > 100% cc) | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Shrubs and Bushes |
Medium bush (<70% cc) | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Shrubs and Bushes |
Bush Clumps/Grassland | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Shrubs and Bushes |
Grassland | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Graminoids |
Bare ground | Natural Terrestrial Non-Vegetated Bare Areas | Unconsolidated Bare Soil |
Degraded Forest, Bushland and old fields (previously bushland) | Natural and Semi-Natural Terrestrial Primary Vegetated Areas | Shrubs and Bushes |
Natural Bare Rock | Natural Terrestrial Non-Vegetated Bare Areas | Consolidated Bare Rock and Coarse Fragments |
Old plantations and high vegetation | Cultivated and Managed Terrestrial Primary Vegetated Areas | Broad Leaved Bushes and Shrubs |
Old plantations and low vegetation | Cultivated and Managed Terrestrial Primary Vegetated Areas | Broad Leaved Bushes and Shrubs |
References
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Muller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Gebhardt, S.; Wehrmann, T.; Ruiz, M.; Maeda, P.; Bishop, J.; Schramm, M.; Kopeinig, R.; Cartus, O.; Kellndorfer, J.; Ressl, R.; et al. Mad-Mex: Automatic wall-to-wall land cover monitoring for the Mexican REDD-MRV program using all Landsat data. Remote Sens. 2014, 6, 3923–3943. [Google Scholar] [CrossRef]
- Fry, J.A.; Xian, G.; Jin, S.M.; Dewitz, J.A.; Homer, C.G.; Yang, L.M.; Barnes, C.A.; Herold, N.D.; Wickham, J.D. National land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 859–864. [Google Scholar]
- Wessels, K.J.; Reyers, B.; van Jaarsveld, A.S.; Rutherford, M.C. Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa. Agric. Ecosyst. Environ. 2003, 95, 157–178. [Google Scholar] [CrossRef]
- GeoTerraImage. 2013–2014 South African National Land-Cover Dataset: Data User Report and Metadata; GeoTerraImage (South Africa): Pretoria, South Africa, 2015; pp. 1–53. [Google Scholar]
- Fairbanks, D.H.K.; Thompson, M.W.; Vink, D.E.; Newby, T.S.; Van den Berg, H.M.; Everard, D.A. The South African land-cover characteristics database: A synopsis of the landscape. S. Afr. J. Sci. 2000, 96, 69–82. [Google Scholar]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C.S. Web-enabled Landsat data (WELD): Landsat ETM plus composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Pesaresi, M. Global Fine-Scale Information Layers: The Need of a Paradigm Shift. In Proceedings of the Big Data from Space, Frascati, Italy, 12–14 November 2014; Soille, P., Marchetti, P.G., Eds.; ESA-ESRIN: Frascati, Italy, 2014. [Google Scholar]
- Kleynhans, W.; Salmon, B.P.; Olivier, J.C.; van den Bergh, F.; Wessels, K.J.; Grobler, T.L.; Steenkamp, K.C. Land cover change detection using autocorrelation analysis on MODIS time-series data: Detection of new human settlements in the gauteng province of South Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 777–783. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P.; Zhang, X.Y.; Ju, J. The suitability of multi-temporal web-enabled Landsat data NDVI for phenological monitoring—A comparison with flux tower and MODIS NDVI. Remote Sens. Lett. 2012, 3, 325–334. [Google Scholar] [CrossRef]
- Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat image time series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sens. 2012, 4, 1856–1886. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M.L. MODIS–Landsat fusion for large area 30 m burned area mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. Timesync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. Landtrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Long, J. Land cover characterization and mapping of South America for the year 2010 using Landsat 30 m satellite data. Remote Sens. 2014, 6, 9494–9510. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- DeVries, B.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sens. Environ. 2015, 169, 320–334. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the national land cover database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series Landsat data for the australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais (INPE). Projeto Prodes: Monitoramento da Floresta Amazônica Brasileira Por Satélite; Instituto Nacional de Pesquisas Espaciais: Brasilia, Brazil, 2014. [Google Scholar]
- Kim, D.H.; Sexton, J.O.; Noojipady, P.; Huang, C.Q.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef]
- Sexton, J.O.; Noojipady, P.; Anand, A.; Song, X.P.; McMahon, S.; Huang, C.Q.; Feng, M.; Channan, S.; Townshend, J.R. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change. Remote Sens. Environ. 2015, 156, 418–425. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.Q.; Kim, D.H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring us agriculture: The us department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 national land cover database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J. Photogramm. Remote Sens. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A. Visualization and unsupervised classification of changes in multispectral satellite imagery. Int. J. Remote Sens. 2006, 27, 3961–3975. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted mad transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef]
- Jewitt, D.; Goodman, P.S.; Erasmus, B.F.N.; O’Connor, T.G.; Witkowski, E.T.F. Systematic land-cover change in Kwazulu-Natal, South Africa: Implications for biodiversity. S. Afr. J. Sci. 2015, 111. [Google Scholar] [CrossRef]
- Escott, B.J.; Jewitt, D. Ezemvelo kzn Wildlife Long Term Land Cover and Land Use Change Monitoring Project for Kwazulu-Natal; Unpublished Report; Ezemvelo KZN Wildlife: Pietermaritzburg, South Africa, 2014. [Google Scholar]
- GeoTerraImage. 2008 kzn Province Land-Cover Mapping (from Spot 5 Satellite Imagery Circa 2008): Data Users Report and Meta Data (Version 1.0). Published Report by Geoterraimage (Pty) Ltd., South Africa for Biodiversity Conservation Planning Division, Ezemvelo KZN Wildlife; Ezemvelo KZN Wildlife: Pietermaritzburg, South Africa, 2010. [Google Scholar]
- EzemveloKZNWildlife; GeoTerraImage. 2011 kzn Province Land-Cover Mapping (from Spot 5 Satellite Image Circa 2011): Data Users Report and Metadata (Version 1d); Unpublished Report; Ezemvelo KZN Wildlife: Pietermaritzburg, South Africa, 2013. [Google Scholar]
- Jewitt, D. Accuracy Assessment Methodology for the 2011 Land Cover; Unpublished Internal Report; Ezemvelo KZN Wildlife, Scientific Services: Pietermaritzburg, South Africa, 2011. [Google Scholar]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2005. [Google Scholar]
- Luck, W.; Mhangara, P.; Kleyn, L.; Remas, H. Land Cover Field Guide; Report to Chief Directorate National Geospatial Information; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2010. [Google Scholar]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous united states using Landsat data: First results from the web-enabled Landsat data (WELD) project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, D.P.; Goetz, S.J.; Loveland, T.R.; Ju, J.; et al. Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Conterminous united states crop field size quantification from multi-temporal Landsat data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sens. Environ. 2015, 158, 478–491. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Schulze, R.E. South African Atlas of Climatology and Agrohydrology; WRC Report 1489/1/06; Water Research Commision: Pretoria, South Africa, 2007. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Colditz, R.R. An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The weka data mining software: An update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Thompson, M. A standard land-cover classification scheme for remote sensing applications in South Africa. S. Afr. J. Sci. 1996, 92, 34–42. [Google Scholar]
- Thompson, M.W. Guideline Procedures for the National Land-Cover Mapping and Change Monitoring; Report ENV/P/C 2001-006; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2001. [Google Scholar]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- DeFries, R.S.; Chan, J.C.W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503–515. [Google Scholar] [CrossRef]
- Naidoo, L.; Mathieu, R.; Main, R.; Wessels, K.; Asner, G.P. L-band synthetic aperture radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 54–64. [Google Scholar] [CrossRef]
- Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K.; Asner, G.P.; Buckley, J.; Van Aardt, J.; Erasmus, B.F.N.; et al. Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric Radarsat-2 fine beam images. Remote Sens. Environ. 2013, 138, 215–231. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
IRMAD Change Detection | Total | ||
---|---|---|---|
operator | change | no-change | |
change | 1003 (true positive) | 25 (false negative) | |
no-change | 199 (false positive) | 320 (true negative) | |
totals | 1202 | 345 | 1547 |
Treatment | Year of Landsat Imagery | Year of Land Cover Training Label | Change Mask Applied | Overall Accuracy (SD) 22 EKZNW Classes | Overall Accuracy (SD) 12 NGI-LSSC Classes |
---|---|---|---|---|---|
1 | 2008 | 2008 | NA | 67.3 (0.57) | 73.9 (0.37) |
2 | 2011 | 2011 | NA | 65.9 (1.33) | 73.4 (0.76) |
3 | 2011 | 2008 | IRMAD mask | 64.8 (0.57) | 71.6 (0.52) |
4 | 2011 | 2008 | none | 64.9 (0.56) | 72.1 (0.42) |
Land Cover Class | User‘s Accuracy | Producer’s Accuracy | Contribution to Overall Error (%) |
---|---|---|---|
Water | 88.5 | 79.4 | 1.0 |
Plantations | 82.6 | 80.8 | 4.0 |
Plantations—clearfelled | 71.4 | 35.8 | 2.3 |
Wetland | 58.3 | 28.1 | 2.7 |
Wetland—mangrove | 27.0 | 11.7 | 0.1 |
Orchards—trees | 71.8 | 2.0 | 0.6 |
Sugarcane | 83.8 | 77.6 | 3.0 |
Mines and Quarries | 55.1 | 6.5 | 0.2 |
Built-up/dense settlement | 76.0 | 57.6 | 2.9 |
Low density settlements | 36.8 | 15.6 | 8.2 |
Cultivation, subsistence, dryland | 48.6 | 18.6 | 18.0 |
Cultivation, commercial, annual crops, dryland | 63.4 | 28.7 | 8.7 |
Cultivation—irrigated | 70.9 | 41.9 | 2.4 |
Forest (indigenous) | 77.3 | 46.2 | 2.8 |
Dense thicket and bush (70% > 100% cc) | 60.3 | 68.6 | 8.1 |
Medium bush (<70% cc) | 53.5 | 65.0 | 13.9 |
Grasslands | 68.1 | 87.8 | 13.7 |
Bare ground | 55.4 | 37.4 | 2.0 |
Degraded Forest, Bushland and old fields (previously bushland) | 28.5 | 2.9 | 4.6 |
Natural Bare Rock | 50.6 | 19.4 | 0.5 |
Old plantations and high vegetation | 16.1 | 2.6 | 0.0 |
Old plantations and low vegetation | 21.3 | 10.8 | 0.2 |
NGI-LCCS Land Cover Class | User’s Accuracy | Producer’s Accuracy |
---|---|---|
Natural and Semi-Natural Terrestrial Primary Vegetated Areas: Trees | 80.8 | 52.4 |
Natural and Semi-Natural Terrestrial Primary Vegetated Areas: Shrubs and Bushes | 75.6 | 76.4 |
Natural and Semi-Natural Terrestrial Primary Vegetated Areas: Graminoids | 68.2 | 88.8 |
Natural or Semi-Natural Aquatic or Regularly Flooded Vegetated Areas: Woody Wetlands | 38.6 | 30.0 |
Cultivated and Managed Terrestrial Primary Vegetated Areas: Needle leaved and Broad leaved | 82.0 | 82.1 |
Cultivated and Managed Terrestrial Primary Vegetated Areas Broad Leaved Bushes and Shrubs | 75.9 | 41.2 |
Cultivated and Managed Terrestrial Primary Vegetated Areas Herbaceous Graminoids | 81.5 | 50.0 |
Natural Terrestrial Non-Vegetated Bare Areas Unconsolidated Bare Soil | 59.4 | 39.4 |
Natural Terrestrial Non-Vegetated Bare Areas Consolidated Bare Rock and Coarse Fragments | 66.3 | 15.7 |
Artificial Terrestrial Primarily Non-Vegetated Areas Built-up Urban/Residential Areas | 75.5 | 41.2 |
Artificial Terrestrial Primarily Non-Vegetated Areas Non-Built-up Artificial Bare Area | 80.0 | 17.4 |
Natural Non-Vegetated Aquatic or Regularly Flooded Water Bodies water | 89.1 | 80.0 |
Land Cover Class | User’s Accuracy | Producer’s Accuracy | Contribution to Overall Error |
---|---|---|---|
Water | 84.8 | 81.9 | 3.94 |
Plantation | 56.6 | 88.5 | 2.42 |
Plantation—clearfelled | 73.3 | 46.5 | 4.85 |
Wetland | 76.6 | 27.3 | 4.85 |
Wetland—mangrove | 100.0 | 17.3 | 4.55 |
Orchards—trees | 70.0 | 5.4 | 7.58 |
Sugarcane | 77.2 | 76.1 | 3.64 |
Mines and Quarries | 98.6 | 17.9 | 6.36 |
Built-up/dense settlement | 62.1 | 68.2 | 3.33 |
Low density settlements | 36.7 | 31.1 | 4.55 |
Cultivation, subsistence, dryland | 70.2 | 32.3 | 10.30 |
Cultivation, commercial, annual crops, dryland | 59.1 | 40.3 | 5.45 |
Cultivation—irrigated | 89.1 | 61.0 | 2.42 |
Forest (indigenous) | 83.2 | 48.6 | 6.67 |
Dense thicket and bush (70% > 100% cc) | 49.3 | 75.2 | 4.85 |
Medium bush (<70% cc) | 37.2 | 58.0 | 5.76 |
Grassland | 36.4 | 90.8 | 1.82 |
Bare ground | 83.6 | 77.9 | 3.64 |
Degraded Forest, Bushland and old fields (previously bushland) | 60.8 | 8.9 | 8.48 |
Natural Bare Rock | 80.0 | 8.3 | 3.33 |
Old plantations and high vegetation | 0.0 | 0.0 | 0.61 |
Old plantations and low vegetation | 90.6 | 58.3 | 0.61 |
System Component (Figure 2) | Function Description | Processing Time (Minutes) |
---|---|---|
1a | FMASK cloud detection | 240 |
1b | IRMAD change detection | 16 |
2 | Processing WELD monthly composites to rank-based metrics | 93 |
3 | Generated sampling points and extracting explanatory variables | 33 |
4a | Train 10 RF classifiers/models | 115 |
4b | Apply 10 RF classifiers to 217,454,311 pixels to produce maps | 68 |
5 | Validation: accuracy assessment—map comparison (X10) | 4 |
Total | 569 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wessels, K.J.; Van den Bergh, F.; Roy, D.P.; Salmon, B.P.; Steenkamp, K.C.; MacAlister, B.; Swanepoel, D.; Jewitt, D. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote Sens. 2016, 8, 888. https://doi.org/10.3390/rs8110888
Wessels KJ, Van den Bergh F, Roy DP, Salmon BP, Steenkamp KC, MacAlister B, Swanepoel D, Jewitt D. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote Sensing. 2016; 8(11):888. https://doi.org/10.3390/rs8110888
Chicago/Turabian StyleWessels, Konrad J., Frans Van den Bergh, David P. Roy, Brian P. Salmon, Karen C. Steenkamp, Bryan MacAlister, Derick Swanepoel, and Debbie Jewitt. 2016. "Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers" Remote Sensing 8, no. 11: 888. https://doi.org/10.3390/rs8110888