Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations
<p>Geological map of the study area. The black lines indicate the distribution of active faults in this area [<a href="#B7-remotesensing-08-00846" class="html-bibr">7</a>], whereas the dashed gray lines show the trace of the secondary faults southwest of Istanbul [<a href="#B8-remotesensing-08-00846" class="html-bibr">8</a>]. The red line and red star show the coseismic rupture and epicenter of the İzmit/Düzce earthquakes, respectively. The black box draws the study area of this paper. The dashed orange boxes show the spatial coverage of the ascending and descending track in this area. NNAF: Northern branch of the North Anatolian Fault; KL: Küçükçekmece Lake; BL: Büyükçekmece Lake. The upper left panel shows the shaded relief map of the study area, in which the isolate red areas show active landslides [<a href="#B9-remotesensing-08-00846" class="html-bibr">9</a>].</p> "> Figure 2
<p>Spatial and temporal distribution of SAR images for the ENVISAT dataset acquired in ascending (<b>a</b>) and descending (<b>b</b>) geometries.</p> "> Figure 3
<p>Persistent scatterers (PS)-InSAR velocity in the LOS (line of sight) direction for ascending (<b>a</b>) and descending geometry (<b>b</b>). Positive means that the ground points move toward the satellite.</p> "> Figure 4
<p>Decomposed InSAR velocity in the horizontal (positive means that points move along N30°W) (<b>a</b>) and the vertical direction (<b>b</b>); (<b>c</b>,<b>d</b>) are the horizontal (N30°W) and vertical crustal velocity that was induced by the post-seismic viscoelastic relaxation of the 1999 İzmit/Düzce earthquakes; (<b>e</b>,<b>f</b>) are fault-parallel and vertical velocity after removing the post-seismic viscoelastic relaxation effect of the İzmit/Düzce earthquakes; black arrows in (<b>a</b>) show GPS velocity in this area [<a href="#B37-remotesensing-08-00846" class="html-bibr">37</a>].</p> "> Figure 5
<p>Sketch map shows the viscoelastic model used for post-seismic viscoelastic relaxation effect (PVRE) estimation.</p> "> Figure 6
<p>Horizontal velocity field along N30°W near KL: (<b>a</b>) Without spatial filtering; (<b>b</b>–<b>d</b>) Filtered data with different spatial filtering length. Purple boxes show the location of the velocity profile (A–A’) shown in <a href="#remotesensing-08-00846-f007" class="html-fig">Figure 7</a>.</p> "> Figure 7
<p>Decomposed horizontal velocity (N30°W) on profiles perpendicular to the orientation of the fault and comparisons to the model predictions that were inferred from the optimal fault parameters: (<b>a</b>) Original fault-parallel velocity without spatial filtering; (<b>b</b>–<b>d</b>) Velocity profiles obtained from low-pass filtered data. The blue lines in each subfigure are the forward predictions based on the inverted optimal fault parameters. In each subfigure, the gray dots show the original or filtered data along the profile, and the red dots represent the mean values at each distance along the profile. The location of this profile is shown in <a href="#remotesensing-08-00846-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>Inversion results: the first column shows the slip rate versus fault locking depth; the second and third columns reveal the statistic distribution of the slip rate and locking depth inferred from each velocity profile. In the first column, the black circles represent the optimal solution inferred from 500 Monte Carlo simulations. (<b>a</b>) Shows the result that was inferred from the original data; (<b>b</b>–<b>d</b>) show the results that were inverted from filtered data with filtering length of 2 km, 4 km and 6 km respectively.</p> "> Figure 9
<p>Decomposed horizontal velocity (in the N120°W direction) on the profile and comparisons with the topography. The first column shows unfiltered data, while the second column shows the data filtered with a filtering length of 1 km. In each subfigure, the gray dots show the original data along the profile, and the red dots represent the mean values at each distance along the profile. The location of the profile is shown in <a href="#remotesensing-08-00846-f006" class="html-fig">Figure 6</a>.</p> "> Figure 10
<p>Comparison between the obtained InSAR velocity and the observed GPS velocity in the study area. The observed horizontal GPS velocities (black arrows) were projected onto the N30°E direction (red arrows). The horizontal InSAR velocity (blue arrows) on each GPS station was the average value of InSAR points within 1 km surrounding the GPS site. AVCT and KCEK are continuous stations, and others are survey sites.</p> "> Figure 11
<p>Synthetic data that was used for the test. (<b>a</b>,<b>b</b>) Synthetic horizontal ((N30°W) and vertical velocity fields; (<b>c</b>,<b>d</b>) Generated LOS velocity fields in the ascending and descending geometric setting; (<b>e</b>,<b>f</b>) Inferred from (<b>c</b>,<b>d</b>) by adding noise; (<b>g</b>,<b>h</b>) Horizontal and vertical velocity that were inverted from noised synthetic LOS velocities (<b>e</b>,<b>f</b>); (<b>i</b>,<b>j</b>) Low-pass filtered horizontal and vertical velocity field (with a filtering length of 1 km) that were obtained from (<b>g</b>,<b>h</b>).</p> "> Figure 12
<p>Input (black dot) and recovered (red dot) horizontal velocity (N30°W) on profiles perpendicular to the orientation of the fault (<a href="#remotesensing-08-00846-f011" class="html-fig">Figure A2</a>a,i).</p> "> Figure 13
<p>Similar to <a href="#remotesensing-08-00846-f011" class="html-fig">Figure A2</a>, but for the synthetic test using the spatially-correlated noise instead of the Gaussian noise. (<b>a</b>,<b>b</b>) Synthetic horizontal ((N30°W) and vertical velocity fields; (<b>c</b>,<b>d</b>) Generated LOS velocity fields in the ascending and descending geometric setting; (<b>e</b>,<b>f</b>) Inferred from (<b>c</b>,<b>d</b>) by adding noise; (<b>g</b>,<b>h</b>) Horizontal and vertical velocity that were inverted from noised synthetic LOS velocities (<b>e</b>,<b>f</b>); (<b>i</b>,<b>j</b>) Low-pass filtered horizontal and vertical velocity field (with a filtering length of 1 km) that were obtained from (<b>g</b>,<b>h</b>).</p> "> Figure 14
<p>Input (black dot) and recovered (red dot) horizontal velocity (N30°W) on profiles perpendicular to the orientation of the fault (<a href="#remotesensing-08-00846-f013" class="html-fig">Figure A4</a>a,i). Similar to <a href="#remotesensing-08-00846-f012" class="html-fig">Figure A3</a>, but using the spatially-correlated noise instead of the Gaussian noise in the synthetic test.</p> ">
Abstract
:1. Introduction
2. Data Handling and Method
2.1. SAR Interferometry Processing
2.2. Signal Decomposition
3. Effect of Post-Seismic Viscoelastic Relaxation
4. Modelling and Results
5. Discussion and Implications
5.1. Limitations
5.2. Tectonic Implication
5.3. Local Landslides and Subsidence
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
A.1. Quantitative Comparison between GPS and InSAR Observation
A.2. Synthetic Tests
References
- Segall, P.; Pollard, D.D. Mechanics of discontinuous faults. J. Geophys. Res. 1980, 85, 4337–4350. [Google Scholar] [CrossRef]
- Ben-Zion, Y.; Rice, J.R. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res. 1995, 100, 12959–12983. [Google Scholar] [CrossRef]
- Zabcı, C.; Sançar, T.H.; Akyüz, S.; GçKıyak, N. Spatial slip behavior of large strike-slip fault belts: Implications for the Holocene slip rates of the eastern termination of the North Anatolian Fault, Turkey. J. Geophys. Res. Solid Earth 2015, 120, 8591–8609. [Google Scholar] [CrossRef] [Green Version]
- Saucier, F.; Humphreys, E.; Weldon, R. Stress near geometrically complex strike-slip faults: Application to the San Andreas fault at Cajon Pass, southern California. J. Geophys. Res. 1992, 97, 5081–5094. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Tuysuz, O.; Imren, C.; Sakınç, M.; Eyidoğa, H.; Görür, N.; Le Pichon, X.; Rangin, C. The North Anatolian fault: A new look. Annu. Rev. Earth Planet. Sci. 2004, 33, 1–75. [Google Scholar] [CrossRef]
- Armijo, R.; Meyer, B.; Hubert, A.; Barka, A. Westward propagation of the North Anatolian Fault into the northern Aegean: Timing and kinematics. Geology 1999, 27, 267–270. [Google Scholar] [CrossRef]
- Armijo, R.; Pondard, N.; Meyer, B.; Uçarkus, G.; de Lépinay, B.M.; Malavieille, J.; Dominguez, S.; Gustcher, M.; Schmidt, S.; Beck, C.; et al. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul. Geochem. Geophys. Geosyst. 2005, 6, Q06009. [Google Scholar] [CrossRef]
- Gokasan, E.; Ustaomer, T.; Gazioglu, C.; Yucel, Z.Y.; Ozturk, K.; Tur, H.; Ecevitoglu, B.; Tok, B. Morpho-tectonic evolution of the Marmara Sea inferred from multibeam bathymetric and seismic data. Geo-Mar. Lett. 2003, 23, 19–33. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Ulusay, R.; Keçer, M.; Emre, Ö.; Ateş, Ş.; Gedik, İ. A geohazard reconnaissance study based on geoscientific information for development needs of the western region of İstanbul (Turkey). Environ. Geol. 2005, 48, 871–888. [Google Scholar] [CrossRef]
- Lorenzo-Martin, F.; Roth, F.; Wang, R. Elastic and inelastic triggering of earthquakes in the North Anatolian Fault zone. Tectonophysics 2006, 424, 271–289. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Gorur, N.; Saroglu, F. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Soc. Ecol. Paleontol. Mineral. Spec. Publ. 1985, 37, 228–264. [Google Scholar]
- Smith, A.D.; Taymaz, T.; Oktay, F.Y.; Yuce, H.; Alpar, B.; Basaran, H.; Jackson, J.A.; Kara, S.; Simsek, M. High-resolution seismic profiling in the Sea of Marmara (Northwest Turkey): Late Quaternary sedimentation and sea-level changes. Geol. Soc. Am. Bull. 1995, 107, 923–936. [Google Scholar] [CrossRef]
- Wong, H.K.; Ludmann, T.; Ulug, A.; Gorur, N. The Sea of Marmara: A plate boundary sea in an escape tectonic regime. Tectonophysics 1995, 244, 231–250. [Google Scholar] [CrossRef]
- Gorur, N.; Cagatay, M.N.; Sakinc, M.; Sumengen, M.; Senturk, K.; Yaltirak, C.; Tchapalyga, A. Origin of the Sea of Marmara as deduced from Neogene to Quaternary paleobiographic evolution of its frame. Int. Geol. Rev. 1997, 39, 342–352. [Google Scholar] [CrossRef]
- Okay, A.I.; Kaslilar-Ozcan, A.; IImren, C.; Boztepe-Guney, A.; Demirbag, E.; Kuscu, I. Active faults and evolving strike-slip basins in the Marmara Sea, Northwest Turkey: A multichannel seismic reflection study. Tectonophysics 2000, 321, 189–218. [Google Scholar] [CrossRef]
- Gokasan, E.; Gazioglu, C.; Alpar, B.; Yucel, Z.Y.; Ersoy, S.; Gundogdu, O.; Yaltirak, C.; Tok, B. Evidences of NW extension of the North Anatolian Fault Zone in the Marmara Sea: A new approach to the 17 August 1999 Marmara Sea earthquake. Geo-Mar. Lett. 2002, 21, 183–199. [Google Scholar] [CrossRef]
- Ergintav, S.; Demirbag, E.; Ediger, V.; Saatcilar, R.; Inan, S.; Cankurtaranlar, A.; Dikbas, A.; Bas, M. Structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian fault. Geophys. J. Int. 2011, 185, 93–105. [Google Scholar] [CrossRef]
- Alp, H. Evidence for active faults in Küçükçekmece Lagoon (Marmara Sea, Turkey), inferred from high-resolution seismic data. Geo-Mar. Lett. 2014, 34, 447–455. [Google Scholar] [CrossRef]
- Tur, H.; Hoskan, N.; Aktas, G. Tectonic evolution of the northern shelf of the Marmara Sea (Turkey): Interpretation of seismic and bathymetric data. Mar. Geophys. Res. 2015, 36, 1–34. [Google Scholar] [CrossRef]
- Dogan, U.; Oz, D.; Ergintav, S. Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul. Turkey. Stud. Geophys. Geod. 2013, 57, 217–232. [Google Scholar] [CrossRef]
- Akarvardar, S.; Feigl, K.L.; Ergintav, S. Ground deformation in an area later damaged by an earthquake: Monitoring the Avcilar district of Istanbul, Turkey, by satellite radar interferometry 1992–1999. Geophys. J. Int. 2009, 178, 976–988. [Google Scholar] [CrossRef]
- Walter, T.R.; Manzo, M.; Manconi, A.; Solaro, G.; Lanari, R.; Motagh, M.; Woith, H.; Parolai, S.; Shirzaei, M.; Zschau, J.; et al. Geohazard supersite: InSAR monitoring at Istanbul city. EOS Trans. 2010, 91, 313–324. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R. Topographic mapping from SAR observation. J. Geophys. Res. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lunari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Pratti, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Costantini, S.; Falco, S.; Malvarosa, F.; Minati, F. A new method for identification and analysis of persistent scatterers in series of SAR images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008.
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F.; Trillo, F.; Vecchioli, F. Persistent scatterer pair interferometry: Approach and application to COSMO-SkyMed SAR data. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2869–2879. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Costantini, M.; Minati, F.; Trillo, F.; Vecchioli, F. Enhanced PSP SAR interferometry for analysis of weak scatterers and high definition monitoring of deformations over structures and natural terrains. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013.
- Costantini, M.; Malvarosa, F.; Minati, F. A General formulation for redundant integration of finite differences and phase unwrapping on a sparse multidimensional domain. IEEE Trans. Geosci. Remote Sens. 2012, 50, 758–768. [Google Scholar] [CrossRef]
- Costantini, M.; Malvarosa, F.; Minati, F.; Vecchioli, F. Multi-scale and block decomposition methods for finite difference integration and phase unwrapping of very large datasets in high resolution SAR interferometry. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5574–5577.
- Lindesy, E.O.; Fialko, Y.; Bock, Y.; Sandwell, D.T.; Bilham, R. Localized and distributed creep along the southern San Andreas Fault. J. Geophys. Res. Solid Earth 2014, 119, 7909–7922. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef]
- Ergintav, S.; Reilinger, R.E.; Çakmak, R.; Floyd, M.; Cakir, Z.; Doğan, U.; King, R.W.; McClusky, S.; Özener, H. Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophys. Res. Lett. 2014, 41, 5783–5788. [Google Scholar] [CrossRef]
- Bürgmann, R.; Dresen, G. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 2008, 36, 531–567. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Roth, F.; Enescu, B.; Hainzl, S.; Ergintav, S. Afterslip and viscoelastic relaxation following the 1999 M7.4 Izmit earthquake from GPS measurements. Geophys. J. Int. 2009, 178, 1220–1237. [Google Scholar] [CrossRef]
- Diao, F.; Walter, T.R.; Solaro, G.; Wang, R.; Bonano, M.; Manzo, M.; Ergintav, S.; Zheng, Y.; Xiong, X.; Lanari, R. Fault locking near Istanbul: Indication of earthquake potential from InSAR and GPS observations. Geophys. J. Int. 2016, 205, 490–498. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Savage, J.C.; Burford, R.O. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar] [CrossRef]
- Walters, R.J.; Holley, R.J.; Parsons, B.; Wright, T.J. Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophys. Res. Lett. 2011, 38, L05303. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Jolivet, R.; Simons, M.; Agram, P.S.; Duputel, Z.; Shen, Z.-K. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 2015, 42, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Cakir, Z.; Ergintav, S.; Ozener, H.; Dogan, U.; Akoglu, A.M.; Meghraoui, M.; Reilinger, R. Onset of aseismic creep on major strike-slip faults. Geology 2012, 40, 1115–1118. [Google Scholar] [CrossRef]
- Hergert, T.; Heidbach, O. Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nat. Geosci. 2010, 3, 132–135. [Google Scholar] [CrossRef]
- BoÄŸaziçi University Kandilli Observatory and Earthquake Research Institute—Regional Earthquake-Tsunami Monitoring Center. Available online: http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/ (accessed on 11 June 2016).
- Duman, T.Y.; Çan, T.; Gokceoglu, C.; Nefeslioglu, H.A.; Sonmez, H. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ. Geol. 2006, 51, 241–256. [Google Scholar] [CrossRef]
- Tezcan, S. S.; Kaya, E.; Bal, E.; Ozdemir, Z. Seismic amplification at Avc lar, Istanbul. Eng. Struct. 2002, 24, 661–667. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diao, F.; Walter, T.R.; Minati, F.; Wang, R.; Costantini, M.; Ergintav, S.; Xiong, X.; Prats-Iraola, P. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations. Remote Sens. 2016, 8, 846. https://doi.org/10.3390/rs8100846
Diao F, Walter TR, Minati F, Wang R, Costantini M, Ergintav S, Xiong X, Prats-Iraola P. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations. Remote Sensing. 2016; 8(10):846. https://doi.org/10.3390/rs8100846
Chicago/Turabian StyleDiao, Faqi, Thomas R. Walter, Federico Minati, Rongjiang Wang, Mario Costantini, Semih Ergintav, Xiong Xiong, and Pau Prats-Iraola. 2016. "Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations" Remote Sensing 8, no. 10: 846. https://doi.org/10.3390/rs8100846