Cultural Heritage Sites in Danger—Towards Automatic Damage Detection from Space
"> Figure 1
<p>Real parts of the Gabor filter bank used in the experiments in this paper according to the different orientations and scales. Highlighted are the filters giving the highest contribution to the detection to be described in next section.</p> "> Figure 2
<p>Map showing the locations of the two sites analyzed in this paper.</p> "> Figure 3
<p>Palmyra’s archaeological site: Temple of Bel (<b>a</b>) ©Dario Bajurin and tower tombs in the background (<b>b</b>) ©szymanskim.</p> "> Figure 4
<p>Subset of the WorldView-2 image acquired on the 27 August 2015 (©European Space Imaging/DigitalGlobe).</p> "> Figure 5
<p>Subset of the WorldView-2 image acquired on the 2 September 2015 (©European Space Imaging/DigitalGlobe).</p> "> Figure 6
<p>Preliminary change maps derived from differences of Gabor features (<b>a</b>) and Robust Differences (<b>b</b>). A limited number of false alarms is visible in both.</p> "> Figure 7
<p>Change map obtained combining the results in <a href="#remotesensing-08-00781-f006" class="html-fig">Figure 6</a>a,b. The impact of false alarms is mitigated and the four targets stand out clearly.</p> "> Figure 8
<p>Red: post-processed change map from <a href="#remotesensing-08-00781-f007" class="html-fig">Figure 7</a> overlaid on the 2 September 2015 WorldView-2 image reported in <a href="#remotesensing-08-00781-f005" class="html-fig">Figure 5</a>. All the main damaged areas are correctly identified (©European Space Imaging/DigitalGlobe).</p> "> Figure 9
<p>Report from [<a href="#B29-remotesensing-08-00781" class="html-bibr">29</a>] showing destroyed CH sites in Palmyra. This map was used as validation for the detected damaged areas (©ASOR CHI/DigitalGlobe).</p> "> Figure 10
<p>Pre-disaster image acquired on the 20 February 2014, screenshot from Google Earth (©DigitalGlobe).</p> "> Figure 11
<p>red: post-processed changes overlaid on the 2 September 2015 WorldView-2 image reported in <a href="#remotesensing-08-00781-f005" class="html-fig">Figure 5</a>. All the main damaged areas are correctly identified with two small false alarms in the southern part of the image (©European Space Imaging/DigitalGlobe).</p> "> Figure 12
<p>Multitemporal representation of damage overlaid on the 2 September 2015 WorldView-2 image reported in <a href="#remotesensing-08-00781-f005" class="html-fig">Figure 5</a> (©European Space Imaging/DigitalGlobe). Damage that occurred between <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics> </math> and between <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>t</mi> <mn>2</mn> </msub> </semantics> </math> is highlighted in blue and red, respectively.</p> "> Figure 13
<p>Nimrud archaeological site topographic map.</p> "> Figure 14
<p>(<b>left</b>) Nimrud pre- (GeoEye-1, 11 July 2011) and (<b>right</b>) post-event image (WorldView-2, 20 April 2015) (©European Space Imaging/DigitalGlobe).</p> "> Figure 15
<p>Nimrud change map, overlaid on the post-destruction image (WorldView-2, 20 April 2015).</p> ">
Abstract
:1. Introduction
2. Robust Change Detection
2.1. Gabor Features
2.2. Robust Differences
- image coordinates,
- maximum distance in pixels from ,
- = coordinates of set of pixels in the neighbourhood centered around .
3. Experiments
3.1. Palmyra
3.2. Nimrud
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CH | Cultural Heritage |
DAI | German Archaeological Institute |
DLR | German Aerospace Center |
DSM | Digital Surface Model |
EO | Earth Observation |
GIS | Geographic Information System |
EUSI | European Space Imaging |
IS | Islamic State |
RD | Robust Difference |
UNESCO | United Nations Educational, Scientific and Cultural Organisation |
VHR | Very High Resolution |
References
- Cowley, D.; Sigurdardottir, K. Remote Sensing for Archaeological Heritage Management; EAC Occasional Paper No. 5; Europae Archaeologiae Consilium: Brussels, Belgium, 2011. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite remote sensing in archaeology: Past, present and future perspectives. J. Archaeol. Sci. 2011, 38, 1995–2002. [Google Scholar] [CrossRef]
- Plank, S.; Strunz, G.; van Ess, M.; Richardson, P. Monitoring of cultural heritage sites using VHR earth observation data. In Proceedings of the WorldView Global Alliance—User Conference, Munich, Germany, 13–14 October 2015.
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Development of an image-based method for the detection of archaeological buried relics using multi-temporal satellite imagery. Int. J. Remote Sens. 2013, 34, 5979–5996. [Google Scholar] [CrossRef]
- Schuetter, J.; Goel, P.; McCorriston, J.; Park, J.; Senn, M.; Harrower, M. Autodetection of ancient Arabian tombs in high-resolution satellite imagery. Int. J. Remote Sens. 2013, 34, 6611–6635. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Larsen, S.Ø.; Solberg, R. Automatic detection of circular structures in high-resolution satellite images of agricultural land. Archaeol. Prospect. 2009, 16, 1–15. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Themistocleous, K.; Hadjimitsis, D. Risk assessment of cultural heritage sites clusters using satellite imagery and GIS: The case study of Paphos District, Cyprus. Nat. Hazards 2016, 1–16. [Google Scholar] [CrossRef]
- Evans, D. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. J. Archaeol. Sci. 2016. [Google Scholar] [CrossRef]
- Casana, J.; Panahipour, M. Satellite-based monitoring of looting and damage to archaeological sites in Syria. J. East. Mediterr. Archaeol. Herit. Stud. 2014, 2, 128–151. [Google Scholar] [CrossRef]
- Contreras, D.A. Huaqueros and remote sensing imagery: Assessing looting damage in the Virú Valley, Peru. Antiquity 2010, 84, 544–555. [Google Scholar] [CrossRef]
- Cunliffe, E. Remote Assessments of Site Damage: A New Ontology. Int. J. Herit. Digit. Era 2014, 3, 453–473. [Google Scholar] [CrossRef]
- Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 837–842. [Google Scholar] [CrossRef]
- Grigorescu, S.E.; Petkov, N.; Kruizinga, P. Comparison of texture features based on Gabor filters. IEEE Trans. Image Process. 2002, 11, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, A.G.; Raja, S.K.; Ram, H.V.R. Neural network-based segmentation of textures using Gabor features. In Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 6 September 2002; pp. 365–374.
- Vijayaraj, V.; Bright, E.A.; Bhaduri, B.L. Rapid Damage Assessment from High Resolution Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 6–11 July 2008; Volume 3, pp. 499–502.
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R.; Tullis, J.A. Object based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Castilla, G.; Guthrie, R.H.; Hay, G.J. The Land-cover Change Mapper (LCM) and its application to timber harvest monitoring in Western Canada. Photogramm. Eng. Remote Sens. 2009, 75, 941–950. [Google Scholar] [CrossRef]
- Tian, J.; Cui, S.; Reinartz, P. Building change detection based on satellite stereo imagery and digital surface models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 406–417. [Google Scholar] [CrossRef]
- United Nations Educational Scientific and Cultural Organisation (UNESCO). Convention cOncerning the Protection of the World Cultural and Natural Heritage. 1972. Available online: http://whc.unesco.org/en/conventiontext (accessed on 19 September 2016).
- Starcky, J.; Munajjed, S. Palmyra: The Bride of the Desert; Directorate-General of Information (Syria): Damascus, Syria, 1960. [Google Scholar]
- Seyrig, H. Antiquités Syriennes; Syria; Librairie Orientaliste Paul Geuthner: Paris, France, 1944; Volume 24, pp. 62–80. [Google Scholar]
- Cantineau, J. Inventaire des Inscriptions de Palmyre Fasc IX: le Sanctuaire de Bel; Damascus Museum: Damascus, Syria, 1934; p. 8. [Google Scholar]
- Danti, M. Palmyrene funerary sculptures at Penn. Expedition 2001, 43, 33–40. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Haghighat, M.; Zonouz, S.; Abdel-Mottaleb, M. CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst. Appl. 2015, 42, 7905–7916. [Google Scholar] [CrossRef]
- Aguilar, M.; del Mar Saldaña, M.; Aguilar, F.J.; Fernández, I. Radiometric comparison between GeoEye-1 and WorldView-2 Panchromatic and Multispectral Imagery. In INGEGRAF-ADM-AIP PRIMECA; Ingegraf: Madrid, Spain, 2013; pp. 1–9. [Google Scholar]
- Cuneo, A.; Penacho, S.; Gordon, L.B. Special Report: Update on the Situation in Palmyra. 2015. Available online: http://www.asor-syrianheritage.org/special-report-update-on-the-situation-in-palmyra (accessed on 19 September 2016).
- Maxwell-Hyslop, K.R. Nimrud and its Remains. By M. E. L. Mallowan. Archaeol. J. 1966, 123, 223–224. [Google Scholar] [CrossRef]
- United Nations Educational Scientific and Cultural Organisation (UNESCO). Iraq’s Heritage: A Treasure under Threat; World Heritage Special Issue; Publishing for Development: London, UK, 2015. [Google Scholar]
- Danti, M.; Branting, S.; Paulette, T.; Cuneo, A. Report on the Destruction of the Northwest Palace at Nimrud. 2015. Available online: http://www.asor-syrianheritage.org/wp-content/uploads/2015/05/ASOR_CHI_Nimrud_Report.pdf (accessed on 19 September 2016).
- Curry, A. Here Are the Ancient Sites ISIS Has Damaged and Destroyed. 2015. Available online: http://news.nationalgeographic.com/2015/09/150901-isis-destruction-looting-ancient-sites-iraq-syria-archaeology/ (accessed on 19 September 2016).
- Danti, M.; Cuneo, A.; Penacho, S.; Al-Azm, A.; Rouhani, B.; Gabriel, M.; Kaercher, K.; O’Connell, J.; Lauricella, A. ASOR Cultural Heritage Initiatives Weekly Report 95–96. 2016. Available online: http://www.asor-syrianheritage.org/asor-cultural-heritage-initiatives-weekly-report-95-96-may-25-2016-june-7-2016/ (accessed on 19 September 2016).
- Council of Europe. European Landscape Convention; Report and Convention; Council of Europe: Florence, Italy, 2000. [Google Scholar]
- Stovel, H. Risk Preparedness: A Management Manual for World Cultural Heritage; ICCROM: Rome, Italy, 1998. [Google Scholar]
- Earth Observation in Cultural Heritage Documentation. 2016. Available online: http://www.earthobservations.org/activity.php?id=24 (accessed on 19 September 2016).
- CIPA Heritage Documentation. 2016. Available online: http://cipa.icomos.org/ (accessed on 19 September 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerra, D.; Plank, S.; Lysandrou, V.; Tian, J. Cultural Heritage Sites in Danger—Towards Automatic Damage Detection from Space. Remote Sens. 2016, 8, 781. https://doi.org/10.3390/rs8090781
Cerra D, Plank S, Lysandrou V, Tian J. Cultural Heritage Sites in Danger—Towards Automatic Damage Detection from Space. Remote Sensing. 2016; 8(9):781. https://doi.org/10.3390/rs8090781
Chicago/Turabian StyleCerra, Daniele, Simon Plank, Vasiliki Lysandrou, and Jiaojiao Tian. 2016. "Cultural Heritage Sites in Danger—Towards Automatic Damage Detection from Space" Remote Sensing 8, no. 9: 781. https://doi.org/10.3390/rs8090781