A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data
"> Figure 1
<p>Localization map of the both network (green triangles), for France (<b>left</b>) and for Tunisia (<b>right</b>). Background are true-color images of L7 (<b>left</b>) and L8 (<b>right</b>) acquired respectively on 29 May 2003 and 29 March 2013. Images are scaled and oriented. The black boxes on images represent the ASTER image footprint used on each location to validate tool (see <a href="#sec4dot2-remotesensing-08-00696" class="html-sec">Section 4.2</a>).</p> "> Figure 2
<p>Flowchart of the LANDARTs algorithm to generate LST images at a resolution of 30 m.</p> "> Figure 3
<p>Comparison between Landsat LST and in situ temperatures (in degree Celsius) for the Tunisian site.</p> "> Figure 4
<p>Comparison between Landsat LST and in situ temperatures (in degree Celsius) for the French site.</p> "> Figure 5
<p>Pixel-by-pixel comparison between the ASTER surface kinetic product and the Landsat LST map at a resolution of 270 m for the Tunisian site.</p> "> Figure 6
<p>Pixel-by-pixel comparison between the ASTER surface kinetic product and the Landsat LST map at a resolution of 270 m for the French site.</p> "> Figure 7
<p>Difference in degree Celsius between ASTER surface kinetic product and Landsat LST map at 270 m resolution on Tunisia (29 March 2013).</p> "> Figure 8
<p>Disparity histogram in degree Celsius between ASTER surface kinetic product and Landsat LST map at 270 m resolution on Tunisia (29 March 2013).</p> "> Figure 9
<p>Difference comparison in degree Celsius between ASTER surface kinetic product and Landsat LST map at 270 m resolution on France (29 May 2003).</p> "> Figure 10
<p>Disparity histogram in degree Celsius between ASTER surface kinetic product and Landsat LST map at 270 m resolution on France (29 May 2003).</p> "> Figure 11
<p>Parameter variability and influence on LST correction for an L7 image taken on 29 May 2003 (199,030). The square black frame represents the ASTER valid data footprint used for the spatial comparison. (<b>a</b>) Transmittance (unitless); (<b>b</b>) upwelling radiance (<math display="inline"> <semantics> <mrow> <mi mathvariant="normal">W</mi> <mo>·</mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>·</mo> <msup> <mi>sr</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>·</mo> <mi mathvariant="sans-serif">μ</mi> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math>); (<b>c</b>) map of emissivity estimates derived from NDVI values used in both corrections (unitless); (<b>d</b>) disparity map, in degree Celsius, comparing LST estimated using spatial parameters with LST estimated using the center-scene correction parameters. White pixels are cloudy or snow-covered pixels detected with the level 2A processor MACCS [<a href="#B45-remotesensing-08-00696" class="html-bibr">45</a>].</p> "> Figure 12
<p>Multi-annual temporal evolution of the atmospheric transmittance parameter (unitless) observed for the set of French images (path/row 199/030). The blue line represents the center-scene transmittance, and the red line is the transmittance for the Aurade site extracted from the spatial parameter image at a resolution of 30 m. The green fill represents the amplitude (min/max) of the transmittance for each Landsat scene.</p> "> Figure 13
<p>Multi-annual temporal evolution of the atmospheric upwelling radiance parameter (<math display="inline"> <semantics> <mrow> <mi mathvariant="normal">W</mi> <mo>·</mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>·</mo> <msup> <mi>sr</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>·</mo> <mi mathvariant="sans-serif">μ</mi> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math>) observed for the set of French images (path/row 199/030). The blue line represents the center-scene upwelling radiance, and the red line is the upwelling radiance for the Aurade site extracted from the spatial parameter image at a resolution of 30 m. The green fill represents the amplitude (min/max) of the upwelling radiance for each Landsat scene.</p> "> Figure 14
<p>Comparison in degree Celsius between Landsat LST and Tunisia in situ temperature for the differing correction methods.</p> "> Figure 15
<p>Comparison in degree Celsius between Landsat LST and French in situ temperature for the differing correction methods.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Correction
- = the spectral at-sensor radiance (top of the atmosphere) ()
- = the radiance of a supposed blackbody surface target at a kinetic temperature T in (K)
- = the atmospheric transmittance (unitless) at the wavelength λ (m)
- = the upwelling atmospheric radiance in the wavelength window ()
- = the downwelling atmospheric radiance in the wavelength window ()
- = the surface spectral emissivity (unitless).
- = equivalent to T, the land surface temperature (K)
- = the surface radiance ()
- = the pre-launch calibration constant 1 ()
- = the pre-launch calibration constant 2 (K)
2.2. Radiative Transfer Modeling with MODTRAN
- The upwelling radiance (i.e., the atmospheric effect between the surface target and the sensor) and the atmospheric transmittance between the surface and the sensor were estimated through simulation by setting the sensor location to 100 km above the surface (considered the sensor altitude) and setting both the surface albedo and emissivity to zero, corresponding to a complete lack of surface reflection for the entire spectrum.
- The downwelling radiance was estimated through a second run using a configuration in which the sensor was located at 1 m above the surface and the surface albedo was set to 1. For this configuration, we assumed that the downwelling radiance was completely reflected upward toward the sensor.
2.3. Atmospheric Profiles Construction
2.4. Emissivity Estimation
2.5. Ground Measurements
2.6. Landsat Data
2.7. ASTER Data
3. LANDARTs
3.1. Main Algorithm
- Acquisition dates and times are read automatically according to the metadata file provided by the USGS data. The four corners of the Landsat footprint are also extracted from GeoTiff metadata.
- The information obtained in (1) are used to create four spatial queries to the ECMWF server: for each two time samples bounding the time input, two queries are done, one for the surface and one for the pressure level dataset. The query zone is defined to be larger than the Landsat footprint to allow interpolations at the edges. Data are in the uniform latitude/longitude grids in one of the resolution proposed by ERA-Interim and selected by user.
- As explained in the ECMWF Section 2.3, the two time profiles constructed with surface and pressure levels for the height from the Earth’s surface to an elevation of 100 km are linearly interpolated between the two times samples to give acquisition time [18]. This interpolation calculus is performed for each point of the ECMWF grid to obtain a 3D matrix (2D spatial and 1D vertical) of an equivalent atmospheric variables profiles at the acquisition time.
- In accordance with the MODTRAN documentation [19], the 10 required input cards are written using the atmospheric profiles obtained in (3). The cards are used to create two tape5 files as MODTRAN inputs. This process is repeated for each point of the ECMWF grid.
- MODTRAN run on each point of the grid defined by atmospheric profiles. When done, the MODTRAN predicted per-wavelength transmission, upwelling radiance and downwelling radiance are integrated over the instrument’s spectral response. According to the metadata, the 2D matrices of the three parameters are finally interpolated using the gdalwarp utility from the open source Geospatial Data Abstraction Library (GDAL, http://www. gdal.org/gdalwarp.html) to create three GeoTiff images oversampled at the resolution of 30 m. These three final parameter’s images can then be used for pixel-by-pixel processing.
3.2. Computing Requirements and Efficiency
- Ubuntu 12.04.2 (x86_64)
- 32 Gb of memory
- 16 Processors (Intel(R) Xeon(R) @2.67GHz)
- Python, Version 2.3
- MODTRAN, Versions 4.3 and 5.1
4. Results and Discussion
4.1. In Situ Validation
4.2. Spatial Validation
4.3. The Importance of Spatial Corrections
- obtained at the center of the image
- corresponding to the set with the minimum value of transmittance, and associated atmospheric radiances in image
- corresponding to the set with the maximum value of transmittance, and associated atmospheric radiances in image
- or spatiality distributed as applied in the LANDARTs tool.
- For the Tunisian site, the choice of correction method had no impact on the results.
- For the French site, the center-scene parameters provided better atmospheric correction.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Antoine, D.; Bentamy, A.; Bonekamp, H.; Breivik, L.; Chapron, B.; Corlett, G.; Dibarboure, G.; DiGiacomo, P.; Donlon, C.; et al. Use of satellite observations for operational oceanography: Recent achievements and future prospects. J. Oper. Oceanogr. 2015, 8, s12–s27. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.L. Quantitative Remote Sensing in Thermal Infrared: Theory and Applications, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Masiello, G.; Serio, C.; De Feis, I.; Amoroso, M.; Venafra, S.; Trigo, I.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos. Meas. Tech. 2013, 6, 3613–3634. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: A validation and intercomparison study. Atmos. Meas. Tech. 2015, 8, 2981–2997. [Google Scholar] [CrossRef]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- USGS. Pages dedicated to Landsat missions. Calibration Notices of January 6, 2014— Landsat 8 Reprocessing Details. Available online: http://landsat.usgs.gov/calibration_notices.php (accessed on 20 August 2016).
- USGS. Pages dedicated to Landsat missions. Calibration Notices of January 29, 2014—Landsat 8 Reprocessing to Begin February 3, 2014. Available online: http://landsat.usgs.gov/calibration_notices.php (accessed on 20 August 2016).
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristóbal, J.; Sobrino, J.; Soria, G.; Ninyerola, M.; Pons, X.; et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.; Sanchez, J.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Qin, Z.H.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. Int. Geosci. Remote Sens. Symp. 2003, 5, 3014–3016. [Google Scholar]
- Berk, A.; Anderson, G.; Acharya, P.; Chetwynd, J.; Bernstein, L.; Shettle, E.; Matthew, M.; Adler-Golden, S. MODTRAN4 User Manual; Air Force Research Laboratory, Space Vehicles Directorate: Wright-Patterson AFB, OH, USA, 1999. [Google Scholar]
- McCarville, D.; Buenemann, M.; Bleiweiss, M.; Barsi, J. Atmospheric correction of Landsat thermal infrared data: A calculator based on North American Regional Reanalysis (NARR) data. In Proceedings of the American Society for Photogrammetry and Remote Sensing Conference, Milwaukee, WI, USA, 1–5 May 2011.
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a Web-Based Atmospheric Correction Tool for Single Thermal Band Instruments. Proc. SPIE 2005. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Zhang, L.; Hu, D.; Zhan, W. Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. Int. J. Remote Sens. 2012, 33, 2582–2602. [Google Scholar] [CrossRef]
- Mira, M.; Olioso, A.; Rivalland, V.; Courault, D.; Marloie, O.; Guillevic, P. Quantifying uncertainties in land surface temperature due to atmospheric correction: Application to Landsat-7 data over a Mediterranean agricultural region. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2375–2378.
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. Proc. SPIE 2005. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- API ERA-Interim. Available online: https://software.ecmwf.int/wiki/display/WEBAPI/ (accessed on 20 August 2016).
- COESA: US Commission/Stand Atmosphere (Compiler); National Oceanic and Atmospheric Administration (Collaborator); National Aeronautics and Space Administration (Collaborator); United States Air Force (Collaborator). U.S. Standard Atmosphere, 1976 (NOAA Document S/T 76-1562), 1st ed.NOAA; NASA; USAF: Silver Spring, MD, USA, 2004.
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air—A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86. [Google Scholar] [CrossRef]
- Alduchov, O.; Eskridge, R. Improved magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Olioso, A. Estimating the difference between brigthness and surface temperatures for a vegetal canopy. Agric. For. Meteorol. 1995, 72, 237–242. [Google Scholar] [CrossRef]
- Ren, H.; Yan, G.; Chen, L.; Li, Z. Angular effect of MODIS emissivity products and its application to the split-window algorithm. ISPRS J. Photogramm. Remote Sens. 2011, 66, 498–507. [Google Scholar] [CrossRef]
- Li, Z.L.; Becker, F.; Stoll, M.; Wan, Z. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens. Environ. 1999, 69, 197–214. [Google Scholar] [CrossRef]
- Wittich, K.P. Some simple relationships between land-surface emissivity, greenness and the plant cover fraction for use in satellite remote sensing. Int. J. Biometeorol. 1997, 41, 58–64. [Google Scholar] [CrossRef]
- Baldridge, A.; Hook, S.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Olioso, A.; Mira, M.; Courault, D.; Marloie, O.; Guillevic, P. Impact of surface emissivity and atmospheric conditions on surface temperatures estimated from top of canopy brightness temperatures derived from Landsat 7 data. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013; pp. 3033–3036.
- Zhang, R.H.; Li, Z.L.; Tang, X.Z.; Sun, X.M.; Su, H.B.; Zhu, C.; Zhu, Z.L. Study of emissivity scaling and relativity of homogeneity of surface temperature. Int. J. Remote Sens. 2004, 25, 245–259. [Google Scholar] [CrossRef]
- Beziat, P.; Ceschia, E.; Dedieu, G. Carbon balance of a three crop succession over two cropland sites in South West France. Agric. For. Meteorol. 2009, 149, 1628–1645. [Google Scholar] [CrossRef] [Green Version]
- Tallec, T.; Beziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Idso, S.B. A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies. Water Resour. Res. 1981, 17, 295–304. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Rokugawa, S.; Hook, S.J.; Matsunaga, T.; Kahle, A.B. Temperature/Emissivity Separation Algorithm Theoretical Basis Document; Version 2.4; NASA/GSFC: Greenbelt, MD, USA, 1999. [Google Scholar]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, M.; Liu, S.; Jia, Z.; Ma, Y. Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sens. 2015, 7, 7126. [Google Scholar] [CrossRef]
- Srivastava, P.; Majumdar, T.; Bhattacharya, A.K. Study of land surface temperature and spectral emissivity using multi-sensor satellite data. J. Earth Syst. Sci. 2010, 119, 67–74. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
Sensor | Wavelength (m) | Native Resolution | Band |
---|---|---|---|
L5 | 10.40–12.50 | 120 m | B6 |
L7 | 10.40–12.50 | 60 m | B6 |
L8 | 10.60–11.19 | 100 m | B10 |
L8 | 11.50–12.51 | 100 m | B11 |
Band No. | Wavelength (m) | Acquisition Resolution |
---|---|---|
10 | 8.125–8.475 | 90 m |
11 | 8.475–8.825 | 90 m |
12 | 8.925–9.275 | 90 m |
13 | 10.25–10.95 | 90 m |
14 | 10.95–11.65 | 90 m |
Site (Lat., Lon.) | Sensor | Date | Acquisition Time (hh:mm:ss) |
---|---|---|---|
Tunisia | L8 | 29 March 2013 | 09:59:14 |
E, N) | ASTER | 29 March 2013 | 10:12:52 |
France | L7 | 29 May 2003 | 10:30:47 |
E, N) | ASTER | 29 May 2003 | 11:00:05 |
Sensor Temperature (C) | Tunisia (C) | France (C) |
---|---|---|
0 | −1.64 | −0.97 |
10 | −0.52 | 0.05 |
20 | 0.59 | 1.09 |
30 | 1.71 | 2.12 |
40 | 2.82 | 3.15 |
50 | 3.94 | 4.19 |
60 | 5.05 | 5.22 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardy, B.; Rivalland, V.; Huc, M.; Hagolle, O.; Marcq, S.; Boulet, G. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sens. 2016, 8, 696. https://doi.org/10.3390/rs8090696
Tardy B, Rivalland V, Huc M, Hagolle O, Marcq S, Boulet G. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sensing. 2016; 8(9):696. https://doi.org/10.3390/rs8090696
Chicago/Turabian StyleTardy, Benjamin, Vincent Rivalland, Mireille Huc, Olivier Hagolle, Sebastien Marcq, and Gilles Boulet. 2016. "A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data" Remote Sensing 8, no. 9: 696. https://doi.org/10.3390/rs8090696
APA StyleTardy, B., Rivalland, V., Huc, M., Hagolle, O., Marcq, S., & Boulet, G. (2016). A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sensing, 8(9), 696. https://doi.org/10.3390/rs8090696