Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico
"> Figure 1
<p>Location of the study area. The Río San Miguel–Río Zanjon region is located in the central part of the state of Sonora, Mexico.</p> "> Figure 2
<p>Thematic map (<b>left</b>) derived from the CART model using Landsat TM scene (<b>right</b>) sub-products and ancillary datasets.</p> "> Figure 3
<p>Results of land cover land use classifications for 1993, 2002 and 2011. A 5 km buffer was overlaid on the main rivers in the region.</p> "> Figure 4
<p>Land cover relationship to average water depth in the ZR and SMR sub-watersheds.</p> "> Figure 5
<p>Well distribution from where water depth readings were collected (<b>a</b>) and 5 km buffer extraction; (<b>b</b>) of water depth surface (generated after IDW interpolation) along rivers.</p> ">
Abstract
:1. Introduction
Addressing Landscape Dynamics on Riparian Vegetation
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Variables Processed
2.2.1. Image Classification and Change Detection
2.2.2. Development of Water Depth Surfaces
2.3. Classification and Change Detection
2.3.1. Classification Scheme
2.3.2. Classification Model
2.3.3. Supervised Classification and Accuracy Assessment
2.3.4. Change Detection in the Watershed and along the Rivers
2.4. Water Depth
2.5. Relationships between Water Depth and Land Cover along the River
3. Results and Discussion
3.1. Classification Accuracy
3.2. Trends and Changes in the Riparian Areas (1993–2011)
3.2.1. Land Cover Trends along the Rivers
3.2.2. Changes in Induced Grasslands, Agriculture and Riparian Vegetation in the SMR-ZR (1993–2011)
Riparian Vegetation
Cultivated/Induced Grasslands
Agriculture
3.3. Water Depth Relationship to Land Cover Dynamics along the Rivers (2002–2011)
3.3.1. Land Cover Relationship to Water Depth (Stable Land Cover between 2002 and 2011)
3.3.2. Changes in Riparian Vegetation (between 2002 and 2011) Related to Water Depth
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; Limburg, K.; Grasso, M.; de Groot, R.; Faber, S.; O’Neill, R.; van den Belt, M.; Paruelo, J.; Raskin, R. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wilson, M.A.; Carpenter, S.R. Economic Valuation of Freshwater Ecosystem Services in the United States: 1971–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar]
- Granados-Sánchez, D.; Hernández-García, M.; López-Ríos, G. Ecología de las zonas ribereñas. Rev. Chapingo Ser 2006, 12, 55–69. (In Spanish) [Google Scholar]
- Makkeasorn, A.; Chang, N.-B.; Li, J. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J. Environ. Manag. 2009, 90, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Zaimes, G.; Nichols, M.; Green, D.; Crimmins, M. Understanding Arizona’s Riparian Areas. College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, 2007. Available online: http://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1432.pdf (accessed on 4 August 2016).
- Myers, N. Threatened biotas: “Hot spots“ in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Myers, N. The biodiversity challenge: Expanded hot-spots analysis. Environmentalist 1990, 10, 243–256. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Loomis, J.; Kent, P.; Strange, L.; Fausch, K.; Covich, A. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from a contingent valuation survey. Ecol. Econ. 2000, 33, 103–117. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Orúe, M.E.; Booman, G.C.; Laterra, P. Uso de la tierra, configuración del paisaje y el filtrado de sedimentos y nutrientes por humedales y vegetación ribereña. In Valoración de Servicios Ecosistémicos: Conceptos, Herramientas y Aplicaciones Para el Ordenamiento Territorial; INTA Ediciones: Buenos Aires, Argentina, 2011; pp. 237–254. (In Spanish) [Google Scholar]
- Sweeney, B.W.; Bott, T.L.; Jackson, J.K.; Kaplan, L.A.; Newbold, J.D.; Standley, L.J.; Hession, W.C.; Horwitz, R.J. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. USA 2004, 101, 14132–14137. [Google Scholar] [CrossRef] [PubMed]
- Ffolliott, P.F.; DeBano, L.F.; Baker, M.B., Jr.; Neary, D.G.; Brooks, K.N. Hydrology and impacts of disturbances on hydrologic function. In Riparian Areas of the Southwestern United States: Hydrology, Ecology, and Management; Baker, M.B., Ffolliott, P.F., DeBano, L.F., Neary, D.G., Eds.; CRC: Boca Raton, FL, USA, 2004; p. 51. [Google Scholar]
- Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico. Biodivers. Conserv. 2009, 18, 247–269. [Google Scholar] [CrossRef]
- Villarreal, M.L.; Van Leeuwen, W.J.; Romo-Leon, J.R. Mapping and monitoring riparian vegetation distribution, structure and composition with regression tree models and post-classification change metrics. Int. J. Remote Sens. 2012, 33, 4266–4290. [Google Scholar] [CrossRef]
- DeBano, L.F.; DeBano, S.J.; Wooster, D.E.; Baker, M.B., Jr. Linkages between riparian corridors and surrounding watersheds. In Riparian Areas of the Southwestern United States: Hydrology, Ecology, and Management; CRC Press LLC: Boca Raton, FL, USA, 2004; p. 408. [Google Scholar]
- Patten, D.T. Riparian ecosytems of semi-arid north america: Diversity and human impacts. Wetlands 1998, 18, 498–512. [Google Scholar] [CrossRef]
- Strauch, A.; Kapust, A.; Jost, C. Impact of livestock management on water quality and streambank structure in a semi-arid, African ecosystem. J. Arid Environ. 2009, 73, 795–803. [Google Scholar] [CrossRef]
- Arriaga, L.; Castellanos, A.E.; Moreno, E.; Alarcón, J. Potential ecological distribution of alien invasive species and risk assessment: A case study of buffel grass in arid regions of Mexico. Conserv. Biol. 2004, 18, 1504–1514. [Google Scholar] [CrossRef]
- Burquez-Montijo, A.; Miller, M.; Martinez-Yrizar, A.; Tellman, B. Mexican grasslands, thornscrub, and the transformation of the sonoran desert by invasive exotic buffelgrass (Pennisetum ciliare). In Invasive Exotic Species in the Sonoran Region; University of Arizona Press: Tuczon, AZ, USA, 2002; p. 424. [Google Scholar]
- Castellanos, A.; Yanes, F.; Valdez-Zamudio, D. Drought-Tolerant Exotic Buffelgrass and Desertification. In Weeds Across Borders: Proceedings of a North American Conference; University of Arizona Press: Tucson, Arizona, USA, 2002; pp. 99–112. [Google Scholar]
- Franklin, K.A.; Lyons, K.; Nagler, P.L.; Lampkin, D.; Glenn, E.P.; Molina-Freaner, F.; Markow, T.; Huete, A.R. Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biol. Conserv. 2006, 127, 62–71. [Google Scholar] [CrossRef]
- Moreno-Vazquez, J.L. y Navarro-Navarro L.A. El fortalecimiento de la resilencia de corredores riparios áridos: Ecohidrología y toma de decisiones en la cuenca del río san miguel. Unpublished work. 2016. (In Spanish) [Google Scholar]
- Ffolliott, P.F.; DeBano, L.F. Riparian Areas of the Southwestern United States: Hydrology, Ecology, and Management; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA). Actualización de la disponibilidad media anual de agua subterránea acuífero (2625) Rio San Miguel estado de Sonora. Diario Oficial de la Federación 2009(a). Available online: http://www.conagua.gob.mx/OCNO07/Noticias/2625%20R%C3%ADo%20San%20Miguel.pdf (accessed on 4 August 2016).
- Comisión Nacional del Agua (CONAGUA). Actualización de la disponibilidad media anual de agua subterránea acuífero (2625) Rio Zanjon estado de Sonora. Diario Oficial de la Federación 2009(b). Available online: http://www.conagua.gob.mx/OCNO07/Noticias/2626%20R%C3%ADo%20Zanj%C3%B3n.pdf (accessed on 4 August 2016).
- Ames, C.R. Importance, Preservation, and Management of Riparian Habitat: A Symposium; Technical Report RM-43; USDA Forest Service Gen.: Denver, CO, USA, 1977; pp. 49–51. [Google Scholar]
- Belsky, A.J.; Matzke, A.; Uselman, S. Survey of livestock influences on stream and riparian ecosystems in the western United States. J. Soil Water Conserv. 1999, 54, 419–431. [Google Scholar]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Webb, R.H.; Leake, S.A.; Turner, R.M. The Ribbon of Green: Change in Riparian Vegetation in the Southwestern United States; University of Arizona Press: Tucson, AZ, USA, 2007. [Google Scholar]
- Kepner, W.G.; Watts, C.J.; Edmonds, C.M.; Maingi, J.K.; Marsh, S.E.; Luna, G. A landscape approach for detecting and evaluating change in a semi-arid environment. J. Environ. Monit. Assess. 2000, 64, 179–195. [Google Scholar] [CrossRef]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; University of South Carolina: Columbus, OH, USA, 1986. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Longley, P. Geographic Information Systems and Science; John Wiley & Sons: Chichester, UK, 2005; p. 517. [Google Scholar]
- Bravo Peña, L.C.; Castellanos Villegas, A.E.; Doode Matsumoto, O.S. Sequía agropecuaria y vulnerabilidad en el centro oriente de sonora: Un caso de estudio enfocado a la actividad ganadera de producción y exportación de becerros. Estudios Soc. (Hermosillo Son.) 2010, 18, 209–241. (In Spanish) [Google Scholar]
- INEGI. Red hidrográfica escala 1:50,000 edición 2.0. Available online: http://www.Inegi.Org.Mx/geo/contenidos/topografia/descarga.Aspx (accesed on 11 June 2016).
- CONAGUA. Programa de Medidas Preventivas y de Mitigación de la Sequía para el Consejo de Cuenca alto Noroeste. Programa Nacional Contra la Sequía (PRONACOSE). Available online: http://www.Pronacose.Gob.Mx/Pronacose14/Contenido/Documentos/Imta_Conagua%20cuenca%20noroeste%20salida.Pdf (accessed on 18 November 2015).
- Universidad de Sonora (UNISON). Estudio geohidrológico de las subcuencas de los ríos Sonora, Zanjon, San Miguel, Mesa del Seri-La Victoria y cuenca Bacoachito. Informe final. Comisión Estatal del Agua. Unpublished Work. 2005. (In Spanish) [Google Scholar]
- Shreve, F.; Wiggins, I.L. Vegetation and Flora of the Sonoran Desert. Vols. 1 and 2; Stanford University Press: Stanford, CA, USA, 1964; pp. 1–840. [Google Scholar]
- Secretaría de Agricultura y Recursos Hidráulicos (SARH). Inventario Forestal Nacional periódico, México 94, Memoria Nacional. Secretaria de Agricultura y Recursos Hidráulicos, Subsecretaría Forestal y de Fauna Silvestre, México, D.F. 1994. Available online: http://repositorio.inecc.gob.mx/ae2/ae_333.750972_m495-08i_1994.pdf (accesed on 2 February 2016). (In Spanish)
- Nabhan, G.P.; Sheridan, T.E. Living fencerows of the Rio San Miguel, Sonora, Mexico: Traditional technology for floodplain management. Hum. Ecol. 1977, 5, 97–111. [Google Scholar] [CrossRef]
- Romo-Leon, J.R.; van Leeuwen, W.J.; Castellanos-Villegas, A. Using remote sensing tools to assess land use transitions in unsustainable arid agro-ecosystems. J. Arid Environ. 2014, 106, 27–35. [Google Scholar] [CrossRef]
- USGS. Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 18 July 2014).
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Wolfe, R.; Masek, J.; Saleous, N.; Hall, F. Ledaps: Mapping North American Disturbance from the Landsat Record. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’04), Anchorage, AK, USA, 20–24 September 2004.
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review articledigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Belmont, CA, USA, 1984. [Google Scholar]
- Roe, B.P.; Yang, H.J.; Zhu, J.; Liu, Y.; Stancu, I.; McGregor, G. Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification. Nucl. Instrum. Meth. A 2005, 543, 577–584. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- De Fries, R.; Hansen, M.; Townshend, J.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Avery, T.E.; Berlin, G.L. Fundamentals of Remote Sensing and Airphoto Interpretation; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.; Huete, A.R.; Laing, T.W. MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Collins, J.B.; Woodcock, C.E. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sens. Environ. 1996, 56, 66–77. [Google Scholar] [CrossRef]
- Asner, G.P.; Keller, M.; Pereira, R.; Zweede, J.C. Remote sensing of selective logging in amazonia: Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sens. Environ. 2002, 80, 483–496. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Roberts, D.A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Díaz-Caravantes, R.E.; Sánchez-Flores, E. Water transfer effects on peri-urban land use/land cover: A case study in a semi-arid region of Mexico. Appl. Geogr. 2011, 31, 413–425. [Google Scholar] [CrossRef]
- Nguyen, U.; Glenn, E.P.; Nagler, P.L.; Scott, R.L. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: The upper San Pedro, Arizona, United States. Ecohydrology 2015, 8, 610–625. [Google Scholar] [CrossRef]
- Bravo Peña, L.C.; Doode Matsumoto, O.S.; Castellanos Villegas, A.E.; Espejel Carbajal, I. Políticas rurales y pérdida de cobertura vegetal: Elementos para reformular instrumentos de fomento agropecuario relacionados con la apertura de praderas ganaderas en el noroeste de méxico. Reg. Soc. 2010, 22, 3–35. (In Spanish) [Google Scholar]
- Stromberg, J.; Tiller, R.; Richter, B. Effects of groundwater decline on riparian vegetation of semiarid regions: The San Pedro, Arizona. Ecol. Appl. 1996, 6, 113–131. [Google Scholar] [CrossRef]
- Gunderson, L.H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 2003, 31, 425–439. [Google Scholar] [CrossRef]
- Michel, H.C.; Oliva, F.G.; Rodríguez, J.C.; Villegas, A.E.C. Cambios en el almacenamiento de nitrógeno y agua en el suelo de un matorral desértico transformado a sabana de buffel (Pennisetum ciliare (L.) link). Rev. Terra Latinoam. 2015, 33, 79–94. (In Spanish) [Google Scholar]
- Stromberg, J.C.; McCluney, K.; Dixon, M.; Meixner, T. Dryland riparian ecosystems in the American southwest: Sensitivity and resilience to climatic extremes. Ecosystems 2013, 16, 1–5. [Google Scholar] [CrossRef]
- Pierini, N.A.; Vivoni, E.R.; Robles-Morua, A.; Scott, R.L.; Nearing, M.A. Using observations and a distributed hydrologic model to explore runoff thresholds linked with mesquite encroachment in the Sonoran Desert. Water Resour. Res. 2014, 50, 8191–8215. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Williams, D.G.; Goodrich, D.C. Ecohydrological impacts of woody-plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Glob. Chang. Biol. 2006, 12, 311–324. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Lite, S.J.; Rychener, T.J.; Levick, L.R.; Dixon, M.D.; Watts, J.M. Status of the riparian ecosystem in the upper San Pedro river, Arizona: Application of an assessment model. Environ. Monit. Assess. 2006, 115, 145–173. [Google Scholar] [CrossRef] [PubMed]
- House-Peters, L.A.; Scott, C.A. Assessing the impacts of land use change on water availability, management, and resilience in arid region riparian corridors: A case study of the San Pedro and Rio Sonora watersheds in southwestern USA and northwestern Mexico. In Procedings of the XIV World Water Congress of the International Water Resources Association, Porto de Galinhas, Brazil, 25–29 September 2011.
Year | Pre-Monsoon Date | Post-Monsoon Date |
---|---|---|
1993 | 10 April | 17 September |
2002 | 21 May | 25 August |
2011 | 28 April | 19 September |
ID | Class | Code | Description |
---|---|---|---|
1 | Agriculture | AG | Areas of perennial crops such as grapes, walnuts and oranges or annual crops including vegetables. |
2 | Water | W | Areas of permanent water with total cover more than 30 m in length. |
3 | Bare Soil | BS | Areas of rock, barren soil or less than 10% vegetation cover. Represents mainly mining areas, some rural roads, waterways and highly impacted areas. |
4 | Desert Scrub | DS | Areas of small-leaved shrubs that grow on alluvial soils that may include groups of thorny species. Within this class can be found species belonging to the genera Cercidium (Parkinsonia), Olneya, Condalia, Lycium, Opuntia and Fouquieria, among others. |
5 | Mesquite Woodland | MW | Areas principally dominated by Prosopis and other subtropical or thorny trees. |
6 | Grassland Cultivated/Induced | GCI | Areas of buffelgrass introduced by direct seeding. |
7 | Riparian Vegetation (include Riparian Mesquite) | RV | Areas of woody vegetation located on the banks of the riverbed. They are characterized by the presence of species that require favorable moisture conditions such as Populus sp. This class may present individuals of the gennus Prosopis. |
8 | Subtropical/Succulent Scrub | SS | Areas of vegetation mainly formed by shrubs or low, thorny trees. They are described as an ecological transition between the class of forest and thorny scrub. The main genera that can be observed are Ipomoea, Bursera and Acacia, to name a few. In regions of hills and middle elevations, Cercidium microphyllum, Opuntia sp., Carnegia gigantea and Lophocereus schottii are the dominant species. |
9 | Forest (Oak and Oak/Pine) | F | Areas of woody vegetation found in temperate or cold climates with higher humidity. The canopy cover of this class is observed in more than 10% of the area with heights up to 15 m high. |
10 | Natural/Native Grassland | GN | Areas dominated by native grasses. Located mainly in the areas of transition between Forest-Subtropical Shrub and forest-Desert Scrub. |
Variable | Reference | No. of Layers | Description |
---|---|---|---|
Normalized Difference Vegetation Index (NDVI) | [56] | 2 | The reflectance properties of vegetation (in the red and near infrared) are used to derive a productivity proxy [33,56,57] |
Soil Adjusted Vegetation Index (SAVI) | [58] | 2 | Minimizes the effect of soil reflectance on the quality of information generated by incorporating a correction factor in the denominator of the classical equation of NDVI [58]. |
Enhanced Vegetation Index | [59,60] | 2 | Optimizes the vegetation signal increasing its sensitivity in regions of high biomass and reducing atmospheric interference. These characteristics are used to help reduce the possible saturation of data that can be present with the NDVI [60]. |
Reflectance | Landsat TM | 12 | Represented as a percentage. Obtained by dividing the energy reflected by a material in a certain wavelength by the incident energy [32]. |
Tasseled Cap | [61] | 12 | Displays data that defines vegetation cover. Provides information on greenness, wetness and brightness of each pixel in the image [32]. |
Multitemporal Kauth–Thomas (MKT) | [62] | 12 | Provides vegetation dynamics between two images using their reflectance. The analysis requires a layer stack containing the bands of the two scenes acquired for the same year. |
Principal Components | [62] | 12 | A statistical technique applied to remotely sensed data used to find the causes of variability in an image and sort these causes in order of importance [32]. |
Texture | [63] | 12 | In this case the texture refers to a description of the spatial variability of tones found within a scene [32]. |
Elevation, Aspect and Slope | USGS (NED) | 3 | Represents the topographic conditions of the area which are derived from the Digital Elevation Model (DEM). |
Class | 1993 | 2002 | 2011 | |||
---|---|---|---|---|---|---|
User’s Accuracy % | Producer’s Accuracy % | User’s Accuracy % | Producer’s Accuracy % | User’s Accuracy % | Producer’s Accuracy % | |
Agriculture | 95 | 86 | 85 | 89 | 80 | 94 |
Water | 100 | 100 | 100 | 100 | 100 | 100 |
Bare Soil | 60 | 75 | 60 | 75 | 70 | 100 |
Desert Scrub | 70 | 52 | 80 | 59 | 75 | 75 |
Mesquite Woodland | 85 | 65 | 75 | 65 | 80 | 53 |
Grasslands Cultivated/Induced | 60 | 86 | 80 | 94 | 75 | 79 |
Riparian Vegetation (includes Riparian Mesquite) | 70 | 100 | 80 | 100 | 80 | 100 |
Subtropical/Succulent Scrub | 85 | 71 | 80 | 73 | 90 | 69 |
Forest (Oak and Oak/Pine) | 90 | 90 | 85 | 94 | 85 | 94 |
Natural/Native Grassland | 75 | 100 | 80 | 80 | 75 | 88 |
Overall accuracy % | 78.9 | 80.6 | 80.6 | |||
Kappa coefficient | 0.764 | 0.783 | 0.783 |
Class Name | Area Ha 1993 | Area Ha 2002 | Area Ha 2011 | Change Ha (1993–2011) | % Change (1993–2011) |
---|---|---|---|---|---|
Agriculture | 21,883 | 21,231 | 14,763 | −7120 | −32.5 |
Water | 964 | 60 | 62 | −902 | −93.6 |
Bare Soil | 2845 | 3337 | 4134 | 1289 | 45.3 |
Desert Scrub | 30,452 | 41,247 | 34,936 | 4484 | 14.7 |
Mesquite Woodland | 49,039 | 49,151 | 50,745 | 1706 | 3.5 |
Grassland Cultivated/Induced | 43,089 | 37,880 | 34,004 | −9085 | −21.1 |
Riparian Vegetation | 22,176 | 22,567 | 22,801 | 625 | 2.8 |
Subtropical/Succulent Scrub | 79,646 | 75,146 | 87,779 | 8133 | 10.2 |
Forest (Oak and Oak/Pine) | 5823 | 6851 | 7922 | 2099 | 36.0 |
Natural/Native Grassland | 4884 | 3332 | 3658 | −1226 | −25.1 |
From | To | 1993–2011 Ha |
---|---|---|
Riparian Vegetation | Agriculture | 1639 |
Riparian Vegetation | Water | 1 |
Riparian Vegetation | Bare Soil | 134 |
Riparian Vegetation | Desert Scrub | 835 |
Riparian Vegetation | Mesquite Woodland | 3198 |
Riparian Vegetation | Grassland Cultivated/Induced | 411 |
Riparian Vegetation | Riparian Vegetation | 9046 |
Riparian Vegetation | Subtropical/Succulent Scrub | 6867 |
Riparian Vegetation | Forest (Oak and Oak/Pine) | 14 |
Riparian Vegetation | Natural/Native Grassland | 30 |
Agriculture | Riparian Vegetation | 2415 |
Water | Riparian Vegetation | 459 |
Bare Soil | Riparian Vegetation | 222 |
Desert Scrub | Riparian Vegetation | 1149 |
Mesquite Woodland | Riparian Vegetation | 4766 |
Grassland Cultivated/Induced | Riparian Vegetation | 1949 |
Subtropical/Succulent Scrub | Riparian Vegetation | 2780 |
Forest (Oak and Oak/Pine) | Riparian Vegetation | 6 |
Natural/Native Grassland | Riparian Vegetation | 7 |
From | To | 1993–2011 Ha |
---|---|---|
Grassland Cultivated/Induced | Agriculture | 2184 |
Grassland Cultivated/Induced | Water | 1 |
Grassland Cultivated/Induced | Bare Soil | 870 |
Grassland Cultivated/Induced | Desert Scrub | 7423 |
Grassland Cultivated/Induced | Mesquite Woodland | 9338 |
Grassland Cultivated/Induced | Grassland Cultivated/Induced | 19,804 |
Grassland Cultivated/Induced | Riparian Vegetation | 1949 |
Grassland Cultivated/Induced | Subtropical/Succulent Scrub | 1510 |
Grassland Cultivated/Induced | Forest (Oak and Oak/Pine) | <1 |
Grassland Cultivated/Induced | Natural/Native Grassland | 7 |
Agriculture | Grassland Cultivated/Induced | 2921 |
Water | Grassland Cultivated/Induced | 46 |
Bare Soil | Grassland Cultivated/Induced | 729 |
Desert Scrub | Grassland Cultivated/Induced | 3604 |
Mesquite Woodland | Grassland Cultivated/Induced | 5963 |
Riparian Vegetation | Grassland Cultivated/Induced | 411 |
Subtropical/Succulent Scrub | Grassland Cultivated/Induced | 517 |
Forest (Oak and Oak/Pine) | Grassland Cultivated/Induced | 5 |
Natural/Native Grassland | Grassland Cultivated/Induced | 3 |
From | To | 1993–2011 (Ha) |
---|---|---|
Agriculture | Agriculture | 8170 |
Agriculture | Water | 2 |
Agriculture | Bare Soil | 473 |
Agriculture | Desert Scrub | 905 |
Agriculture | Mesquite Woodland | 6760 |
Agriculture | Grassland Cultivated/Induced | 2921 |
Agriculture | Riparian Vegetation | 2415 |
Agriculture | Subtropical/Succulent Scrub | 228 |
Agriculture | Forest (Oak and Oak/Pine) | 1 |
Agriculture | Natural/Native Grassland | 7 |
Water | Agriculture | 183 |
Bare Soil | Agriculture | 220 |
Desert Scrub | Agriculture | 565 |
Mesquite Woodland | Agriculture | 1505 |
Grassland Cultivated/Induced | Agriculture | 2184 |
Riparian Vegetation | Agriculture | 1639 |
Subtropical/Succulent Scrub | Agriculture | 278 |
Forest (Oak and Oak/Pine) | Agriculture | 15 |
Natural/Native Grassland | Agriculture | 4 |
From | To | Ha |
---|---|---|
Riparian Vegetation | Agriculture | 264 |
Riparian Vegetation | Bare Soil | 106 |
Riparian Vegetation | Desert Scrub | 108 |
Riparian Vegetation | Mesquite Woodland | 122 |
Riparian Vegetation | Grassland Cultivated/Induced | 27 |
Riparian Vegetation | Riparian Vegetation | 3195 |
Riparian Vegetation | Subtropical/Succulent Scrub | 2164 |
Riparian Vegetation | Natural Grassland | 3 |
Agriculture | Riparian Vegetation | 849 |
Bare Soil | Riparian Vegetation | 4 |
Desert Scrub | Riparian Vegetation | 82 |
Mesquite Woodland | Riparian Vegetation | 178 |
Grassland Cultivated/Induced | Riparian Vegetation | 5 |
Subtropical/Succulent Scrub | Riparian Vegetation | 226 |
Forest (Oak and Oak/Pine) | Riparian Vegetation | <1 |
Natural Grassland | Riparian Vegetation | <1 |
From | To | Ha |
---|---|---|
Riparian Vegetation | Agriculture | 781 |
Riparian Vegetation | Water | 3 |
Riparian Vegetation | Bare Soil | 58 |
Riparian Vegetation | Desert Scrub | 699 |
Riparian Vegetation | Mesquite Woodland | 2869 |
Riparian Vegetation | Grassland Cultivated/Induced | 772 |
Riparian Vegetation | Riparian Vegetation | 8181 |
Riparian Vegetation | Subtropical/Succulent Scrub | 1980 |
Riparian Vegetation | Forest (Oak and Oak/Pine) | <1 |
Riparian Vegetation | Natural Grassland | 2 |
Agriculture | Riparian Vegetation | 1741 |
Water | Riparian Vegetation | 6 |
Bare Soil | Riparian Vegetation | 84 |
Desert Scrub | Riparian Vegetation | 566 |
Mesquite Woodland | Riparian Vegetation | 3728 |
Grassland Cultivated/Induced | Riparian Vegetation | 1152 |
Subtropical/Succulent Scrub | Riparian Vegetation | 1078 |
Forest (Oak and Oak/Pine) | Riparian Vegetation | 45 |
Natural Grassland | Riparian Vegetation | 1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Estrella, R.; Romo-Leon, J.R.; Castellanos, A.E.; Gandarilla-Aizpuro, F.J.; Hartfield, K. Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico. Remote Sens. 2016, 8, 664. https://doi.org/10.3390/rs8080664
Mendez-Estrella R, Romo-Leon JR, Castellanos AE, Gandarilla-Aizpuro FJ, Hartfield K. Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico. Remote Sensing. 2016; 8(8):664. https://doi.org/10.3390/rs8080664
Chicago/Turabian StyleMendez-Estrella, Romeo, Jose Raul Romo-Leon, Alejandro E. Castellanos, Fabiola J. Gandarilla-Aizpuro, and Kyle Hartfield. 2016. "Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico" Remote Sensing 8, no. 8: 664. https://doi.org/10.3390/rs8080664
APA StyleMendez-Estrella, R., Romo-Leon, J. R., Castellanos, A. E., Gandarilla-Aizpuro, F. J., & Hartfield, K. (2016). Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico. Remote Sensing, 8(8), 664. https://doi.org/10.3390/rs8080664