Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China
"> Figure 1
<p>Photos of Mai Po Marshes Nature Reserve and Futian Mangrove National Nature Reserve. (<b>a</b>) The entrance door of Mai Po reserve; (<b>b</b>) mangrove communities in Mai Po; (<b>c</b>) lush canopy of mangroves in Mai Po; (<b>d</b>) Futian wetland park; (<b>e</b>) sparse mangroves in Futian; and (<b>f</b>) Futian mangroves adjoining an urban area.</p> "> Figure 2
<p>Location of the study area. (CZ: Core Zone; BMZ: Biodiversity Management Zone; WUZ: Wise Use Zone; PAZ: Public Access Zone; PLA: Private Land Zone; BZ: Buffer zone; and EZ: Experimental zone).</p> "> Figure 3
<p>Land cover classification of the MPMNR and the FMNNR from 1973–2015, and mangrove changes between 1973 and 2015. (<b>a</b>) mangroves and other land covers in 1973; (<b>b</b>) mangroves and other land covers in 1979; (<b>c</b>) mangroves and other land covers in 1988; (<b>d</b>) mangroves and other land covers in 1993; (<b>e</b>) mangroves and other land covers in 1996. (<b>f</b>) mangroves and other land covers in 1999; (<b>g</b>) mangroves and other land covers in 2003; (<b>h</b>) mangroves and other land covers in 2006; (<b>i</b>) mangroves and other land covers in 2010; (<b>j</b>) mangroves and other land covers in 2013; (<b>k</b>) mangroves and other land covers in 2015; (<b>l</b>) boundaries of mangrove patches during 1973 to 2015.</p> "> Figure 3 Cont.
<p>Land cover classification of the MPMNR and the FMNNR from 1973–2015, and mangrove changes between 1973 and 2015. (<b>a</b>) mangroves and other land covers in 1973; (<b>b</b>) mangroves and other land covers in 1979; (<b>c</b>) mangroves and other land covers in 1988; (<b>d</b>) mangroves and other land covers in 1993; (<b>e</b>) mangroves and other land covers in 1996. (<b>f</b>) mangroves and other land covers in 1999; (<b>g</b>) mangroves and other land covers in 2003; (<b>h</b>) mangroves and other land covers in 2006; (<b>i</b>) mangroves and other land covers in 2010; (<b>j</b>) mangroves and other land covers in 2013; (<b>k</b>) mangroves and other land covers in 2015; (<b>l</b>) boundaries of mangrove patches during 1973 to 2015.</p> "> Figure 3 Cont.
<p>Land cover classification of the MPMNR and the FMNNR from 1973–2015, and mangrove changes between 1973 and 2015. (<b>a</b>) mangroves and other land covers in 1973; (<b>b</b>) mangroves and other land covers in 1979; (<b>c</b>) mangroves and other land covers in 1988; (<b>d</b>) mangroves and other land covers in 1993; (<b>e</b>) mangroves and other land covers in 1996. (<b>f</b>) mangroves and other land covers in 1999; (<b>g</b>) mangroves and other land covers in 2003; (<b>h</b>) mangroves and other land covers in 2006; (<b>i</b>) mangroves and other land covers in 2010; (<b>j</b>) mangroves and other land covers in 2013; (<b>k</b>) mangroves and other land covers in 2015; (<b>l</b>) boundaries of mangrove patches during 1973 to 2015.</p> "> Figure 4
<p>Temporal changes of mangrove forests in the core zones of the MPMNR and FMNNR from 1973–2015.</p> "> Figure 5
<p>Movement of the area-weighted centroids of the mangrove patches in the MPMNR and FMNNR from 1973–2015.</p> "> Figure 6
<p>Landscape metrics measuring mangrove patch size, density, and shape complexity, (<b>A</b>) AREA_MN (hm<sup>2</sup>) represents mean patch size; (<b>B</b>) PD (n/100 hm<sup>2</sup>) represents the number of patches per area unit; (<b>C</b>) LPI (%) represents area percentage of the largest patch; (<b>D</b>) LSI represents landscape shape index; (<b>E</b>) AI (%) represent aggregation of patches; and (<b>F</b>) ENN_MN (m) represents the average Euclidean nearest-neighbor index.</p> "> Figure 7
<p>Mangroves restored by secondary succession in Shan Pui River mouth, MPMNR. (<b>A</b>) Landsat image in 2001, R:G:B = 4:3:2; (<b>B</b>) Landsat image in 2002, R:G:B = 4:3:2; (<b>C</b>) Landsat image in 2003, R:G:B = 4:3:2; (<b>D</b>) Landsat image in 2006, R:G:B = 4:3:2.</p> ">
Abstract
:1. Introduction
2. Background: Mangrove Conservation Projects
3. Materials and Methods
3.1. Study Area
3.2. Data Preparation
3.3. Methodology
4. Results
4.1. Classification Results and Accuracy Assessment
4.2. Temporal and Spatial Dynamics of Mangroves in the MPMNR and the FMNNR
4.3. Changes in the Landscape Pattern Metrics of the Mangroves in the MPMNR and FMNNR
5. Discussion
5.1. Changes in Mangroves before and after Protection
5.2. Uncertainties
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CNNRS | China’s National Nature Reserve System |
MPMNR | Mai Po Marshes Nature Reserve |
FMNNR | Futian Mangrove National Nature Reserve |
CNNR | China’s National Nature Reserves |
CZ | Core Zone |
BMZ | Biodiversity Management Zone |
WUZ | Wise Use Zone |
PAZ | Public Access Zone |
PLA | Private Land Zone |
BZ | Buffer zone |
EZ | Experimental zone |
References
- Field, C.D. Rehabilitation of mangrove ecosystems, a review. Mar. Pollut. Bull. 1998, 37, 383–392. [Google Scholar] [CrossRef]
- Giri, C.P.B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis III, R.R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves a review. Aquat. Bot. 2008, 89, 251–259. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the worlds threatened major tropical environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef]
- Kamalil, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef]
- Blasco, F.; Aiapuru, M.; Gers, C. Depletion of the mangroves of continental asia. Wetl. Ecol. Manag. 2001, 9, 245–256. [Google Scholar] [CrossRef]
- Matthews, G.V.T. The Ramsar Covention on Wetlands; Its History and Development; Secretariat, R.C., Ed.; Imprimerie Dupuis SA: Gland, Switzerland, 2013; pp. 4–7. [Google Scholar]
- Spalding, M.; Kainuma, M.; Field, C. World Mangrove Atlas; Samara Publishing Co.: Okinawa, Japan, 1997. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhard, S.; Vo Quoc, T.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Jusoff, K. Individual mangrove species identification and mapping in Port Klang using airborne hyperspectral imaging. J. Sustain. Sci. Manag. 2006, 1, 27–36. [Google Scholar]
- Giri, C.; Muhlhausen, J. Mangrove forest distribution and dynamics in Madagascar (1975–2005). Sensors 2008, 8, 2104–2117. [Google Scholar] [CrossRef]
- Everitt, J.H.; Yang, C.; Sriharan, S.; Judd, F.W. Using high resolution satellite imagery to map black mangrove on the Texas Gulf Coast. J. Coast. Res. 2008, 24, 1582–1586. [Google Scholar] [CrossRef]
- Demuro, M.; Chisholm, L. Assessment of Hyperion for Characterizing Mangrove Communities. In Proceedings of the 12th JPL AVIRIS Airborne Earth Science Workshop, Pasadena, CA, USA, 24–28 February 2003.
- Lucas, R.M.; Mitchell, A.L.; Rosenqvist, A.; Proisy, C.; Melius, A.; Ticehurst, C. The potential of L-band SAR for quantifying mangrove characteristics and change: Case studies from the tropics. Aquat. Conserv. 2007, 17, 245–264. [Google Scholar] [CrossRef]
- MacKay, H.; Finlayson, C.M.; Fernández-Prieto, D.; Davidson, N.; Pritchard, D.; Rebelo, L.-M. The role of Earth Observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J. Environ. Manag. 2009, 90, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Filho, P.W.M.S.; Martins, E.D.S.F.; da Costa, F.R. Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat, Brazilian Amazon: A remote sensing data approach. Ocean Coast Manag. 2006, 49, 462–475. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Chang. 2007, 17, 486–500. [Google Scholar] [CrossRef]
- Long, J.B.; Giri, C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Ochieng, E.; Tieszen, L.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Ren, C. Landsat-Based estimation of mangrove forest loss and restoration in Guangxi Province, China, influenced by human and natural factors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 311–323. [Google Scholar] [CrossRef]
- Wang, Y.; Bonynge, G.; Nugranad, J.; Traber, M.; Ngusaru, A.; Tobey, J.; Hale, L.; Bowen, R.; Makota, V. Remote sensing of mangrove change along the Tanzania Coast. Mar. Geod. 2003, 26, 35–48. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Li, L.; Song, K.; Ren, C.; Liu, B.; Mao, D. Mapping China’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands 2014, 34, 277–283. [Google Scholar] [CrossRef]
- Saito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in Arabian Gulf. Int. J. Remote Sens. 2003, 24, 4073–4092. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Silván-Cárdenas, L.; Sousa, W.P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote Sens. 2008, 74, 921–927. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Fletcher, R.S.; Jensen, R.R.; Mausel, P.W. Evaluating AISA+ hyperspectral imagery for mapping black mangrove along the South Texas Gulf Coast. Photogramm. Eng. Remote Sens. 2009, 75, 425–435. [Google Scholar] [CrossRef]
- Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [Google Scholar] [CrossRef]
- Heumann, B. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geog. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Cracknell, A.P. Synergy in remote sensing—What’s in a pixel? Int. J. Remote Sens. 1998, 19, 2025–2047. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Lorup, E.; Strobl, J.; Zeil, P. Object-oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications. In Environmental Information for Planning, Politics and the Public; Cremers, A., Greve, K., Eds.; Metropolis Verlag: Marburg, Germany, 2000; pp. 555–570. [Google Scholar]
- Xie, Z.; Roberts, C.; Johnson, B. Object-based target search using remotely sensed data: A case study in detecting invasive exotic Australian Pine in South Florida. JSPRS J. Phptpgramm. 2008, 63, 647–660. [Google Scholar] [CrossRef]
- Hay, G.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object Based Image Analysis; Blaschke, T., Lang, S., Hay, G., Eds.; Springer: Heidelberg, Germany; Berlin, Germany; New York, NY, USA, 2008; pp. 93–112. [Google Scholar]
- Berlanga-Robles, C.A.; Ruiz-Luna, A. Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. J. Coast. Res. 2002, 18, 514–522. [Google Scholar]
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 2008, 63, 578–589. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Chinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Johnsson, K. Segment-based land-use classification from SPOT satellite data. Photogramm. Eng. Remote Sens. 1994, 60, 47–53. [Google Scholar]
- Im, J.; Jensen, J. A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sens. Environ. 2005, 99, 326–340. [Google Scholar] [CrossRef]
- RAMSAR. Available online: http://www.ramsar.org (accessed on 25 July 2016).
- Zhang, K.M.; Wen, Z.G. Review and challenges of policies of environmental protection and sustainable development in china. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ouyang, Z.; Pimm, S.L.; Raven, P.H.; Wang, X.; Miao, H.; Han, N. Protecting chinas biodiversity. Science 2003, 300, 1240–1241. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Wang, X.; Miao, H.; Han, N. Problems of management system of china's nature preservation zones and their solutions. Sci. Tech. Rev. 2002, 1, 49–52. [Google Scholar]
- Nature Reserve of China. Available online: http://www.nre.cn/ (accessed on 25 February 2016).
- Tam, N.F.Y.; Wong, Y.S. Hong Kong Mangroves; City University of Hong Kong Press: Hong Kong, China, 2000. [Google Scholar]
- UNEP-WCMC. In the Front-Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs; UNEP-WCMC: Cambridge, UK, 2006; pp. 5–9. [Google Scholar]
- Chang, H.T.; Chen, G.Z.; Liu, Z.P.; Zhang, S.Y. Studies on Futian Mangrove Wetland Ecosystem, Shenzhen; Guangdong Province Guangdong Science and Technology Press: Guangzhou, China, 1998. (In Chinese) [Google Scholar]
- Chen, G.Z.; Wang, Y.J.; Huang, Q.L. A study on the biodiversity and protection in futian national nature reserve of mangroves and birds, Shenzhen. Biodiv. Sci. 1997, 5, 104–111. [Google Scholar]
- Deng, L.; Liu, G.-H.; Zhang, H.-M.; Xu, H.-L. Levels and assessment of organotin contamination at Futian. Region. Stud. Mar. Sci. 2015, 1, 18–24. [Google Scholar] [CrossRef]
- USGS. Earth Resources Observation and Science Center. Available online: http://glovis.usgs.gov (accessed on 18 September 2015).
- ENVI User’s Guide: Version 4.8; Research Systems, Inc.: Boulder, CO, USA, 2010.
- Nazeer, M.; Nichol, J.E.; Yung, Y.K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). ArcGIS 9.3; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2008. [Google Scholar]
- Definiens AG. Definiens Professional 8.6 User Guide; Definiens AG: Munchen, Germany, 2011. [Google Scholar]
- Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung; Strbl, J., Blaschke, T., Eds.; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillette, S.C. Identifying mangrove species and their surrounding land use and land cover classes using an object-oriented approach with a lacunarity spatial measure. Gisci. Remote Sens. 2008, 45, 188–208. [Google Scholar] [CrossRef]
- Singh, S. Nearest-neighbor classifiers in natural scene analysis. Pattern Recogn. 2001, 34, 1601–1612. [Google Scholar] [CrossRef]
- Vaz, E. Managing urban coastal areas through landscape metrics: An assessment of Mumbai’s mangrove system. Ocean Coast. Manag. 2014, 98, 27–37. [Google Scholar] [CrossRef]
- UMass Landscape Ecology Lab. http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 12 June 2015).
- Baldi, G.; Guerschman, J.P.; Paruelo, J.M. Characterizing fragmentation in temperate South America grasslands. Agric. Ecosyst. Environ. 2006, 116, 197–208. [Google Scholar] [CrossRef]
- Mesev, V. The Use of Census Data in Urban Image Classification. Photogramm. Eng. Remote Sens. 1998, 64, 431–438. [Google Scholar]
- Shyrock, H.S.; Siegei, J.S.; Larmon, E.A. The Methods and Materials of Demography; U. S. Government Printing Office: Washington, DC, USA, 1973.
- Ehman, J.L.; Fan, W.; Randolph, J.C.; Southworth, J.; Welch, N.T. An intergrated GIS and modeling approach for assessing the transient response of forests of the southern Great Lakes region to a doubled CO2 climate. For. Ecol. Manag. 2002, 155, 237–255. [Google Scholar] [CrossRef]
- Wang, W.Q.; Wang, M. The Mangroves of China; Science Press: Beijing, China, 2007. [Google Scholar]
- Manson, F.J.; Loneragan, N.R.; Phinn, S.R. Spatial and temporal variation in distribution of mangroves in moreton bay, subtropical australia: A comparisonof pattern metrics and change detection analyses based on aerial photographs. Estuar Coast Shelf Sci. 2003, 57, 653–666. [Google Scholar] [CrossRef]
- Holguin, G.; Gonzalez-Zamorano, P.; de-Bashan, L.E.; Mendoza, R.; Amador, E.; Bashan, Y. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 2006, 363, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Martinuzzi, S.; Gould, W.A.; Lugo, A.E.; Medina, E. Conversion and recovery of puerto rican mangroves: 200 years of change. For. Ecol. Manag. 2009, 257, 75–84. [Google Scholar] [CrossRef]
- Ren, H.; Wu, X.; Ning, T.; Huang, G.; Wang, J.; Jian, S.; Lu, H. Wetland changes and mangrove restoration planning in Shenzhen bay, Southern China. Lands. Ecol. Eng. 2011, 7, 241–250. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in china. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Wang, B.S.; Liao, B.W.; Wang, Y.J.; Zan, Q.J. Mangrove Forest Ecosystem and Its Sustaninable Development in Shenzhen Bay; Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Li, M.; Liao, B.W. Introduction and ecological impact of Sonneratia apetala. Prot. For. Sci. Technol. 2008, 3, 100–102, (In Chinese with English abstract). [Google Scholar]
- Agriculture, Fisheries and Conservation Department (AFCD). Mai Po Inner Deep Bay RAMSAR Site Management Plan Executive Summary; Agriculture, Fisheries and Conservation Department: Hong Kong, China, 2011.
Year | Path/Row | Sensor | Date | Time (hh:mm:ss) | Instantaneous Tidal Height (m) |
---|---|---|---|---|---|
1973 | 131/44 | MSS | 25 December | 10:21:03 | −0.15 |
1979 | 131/44 | MSS | 6 November | 10:09:59 | 0.02 |
1988 | 122/44 | TM | 3 July | 10:22:46 | 0.47 |
1993 | 122/44 | TM | 5 October | 10:14:22 | −0.06 |
1996 | 122/44 | TM | 31 January | 09:56:30 | −0.13 |
1999 | 122/44 | ETM+ | 15 November | 10:45:00 | 0.32 |
2003 | 122/44 | ETM+ | 12 December | 10:40:38 | 0.07 |
2006 | 122/44 | ETM+ | 4 December | 10:41:59 | −0.18 |
2010 | 122/44 | ETM+ | 28 October | 10:44:23 | 0.12 |
2013 | 122/44 | ETM+ | 10 March | 10:48:15 | 0.52 |
2015 | 122/44 | OLI | 19 January | 10:52:22 | −0.09 |
Year | Total Samples | Training Samples | Validation Samples |
---|---|---|---|
1973 | 258 | 40 | 218 |
1979 | 269 | 46 | 223 |
1988 | 277 | 55 | 222 |
1993 | 241 | 35 | 206 |
1996 | 336 | 102 | 234 |
1999 | 323 | 91 | 232 |
2003 | 326 | 80 | 246 |
2006 | 352 | 99 | 253 |
2010 | 346 | 100 | 246 |
2013 | 365 | 102 | 263 |
2015 | 352 | 100 | 252 |
Metrics (Unit) | Category | Description |
---|---|---|
PD (n/100 hm2) | Size and variability | Number of patches per area unit |
LPI (%) | Size and variability | Area percent that the largest patch occupies |
LSI (none) | Shape complexity | Landscape shape index |
AREA_MN (hm2) | Size and variability | Mean patch size |
ENN_MN(m) | Fragmentation | Average Euclidean nearest neighbor index |
AI (%) | Contagion/interspersion | Aggregation of patches |
Era | Mangroves | Sea Water | Other Vegetation | Pond | Others | Accuracy | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GT | CR | GT | CR | GT | CR | GT | CR | GT | CR | OA | KC | |
1973 | 59 | 52 | 37 | 26 | 29 | 20 | 55 | 49 | 38 | 28 | 80% | 0.75 |
1979 | 65 | 58 | 28 | 20 | 36 | 29 | 62 | 53 | 32 | 21 | 81% | 0.79 |
1988 | 69 | 64 | 29 | 22 | 12 | 9 | 78 | 70 | 34 | 24 | 85% | 0.8 |
1993 | 72 | 66 | 25 | 20 | 21 | 17 | 69 | 61 | 19 | 16 | 87% | 0.82 |
1996 | 79 | 71 | 34 | 28 | 17 | 11 | 85 | 78 | 21 | 16 | 86% | 0.83 |
1999 | 80 | 74 | 32 | 29 | 15 | 11 | 81 | 74 | 24 | 19 | 89% | 0.85 |
2003 | 76 | 72 | 38 | 33 | 9 | 7 | 88 | 82 | 35 | 30 | 91% | 0.89 |
2006 | 79 | 73 | 40 | 35 | 18 | 13 | 90 | 82 | 26 | 20 | 88% | 0.85 |
2010 | 82 | 78 | 28 | 24 | 24 | 20 | 79 | 72 | 33 | 28 | 90% | 0.88 |
2013 | 88 | 84 | 34 | 30 | 26 | 22 | 84 | 78 | 31 | 26 | 91% | 0.89 |
2015 | 94 | 89 | 29 | 25 | 21 | 18 | 80 | 74 | 28 | 26 | 92% | 0.93 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Liu, M.; Wang, Z.; Mao, D.; Ren, C.; Cui, H. Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. https://doi.org/10.3390/rs8080627
Jia M, Liu M, Wang Z, Mao D, Ren C, Cui H. Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China. Remote Sensing. 2016; 8(8):627. https://doi.org/10.3390/rs8080627
Chicago/Turabian StyleJia, Mingming, Mingyue Liu, Zongming Wang, Dehua Mao, Chunying Ren, and Haishan Cui. 2016. "Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China" Remote Sensing 8, no. 8: 627. https://doi.org/10.3390/rs8080627
APA StyleJia, M., Liu, M., Wang, Z., Mao, D., Ren, C., & Cui, H. (2016). Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China. Remote Sensing, 8(8), 627. https://doi.org/10.3390/rs8080627