A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data
"> Figure 1
<p>The location of the study area (<b>a</b>); and the 30-m HJ-1B CCD false color image (R: Near Infrared (NIR), G: Red, B: Green) acquired on 11 May 2009 (<b>b</b>).</p> "> Figure 2
<p>Temporal distribution of the images used from the two months. Each spot represents an acquired image.</p> "> Figure 3
<p>Brightness temperature (BT) images from band 7 (<b>a</b>) and band 8 (<b>b</b>) acquired on 22 May 2009.</p> "> Figure 4
<p>Reference images acquired on 29 April 2009: (<b>a</b>) HJ-1B IRS false color image (R: band 7, G: band 6, B: band 5), dark blue represents water (green circle 1), blue represents smoke (green circle 2), bright red represents active fire (green circle 3) and reddish brown represents post fire (green circle 4); (<b>b</b>) HJ-1B CCD false color image (R: band 4, G: band 3, B: band 2); and (<b>c</b>) MODIS fire product.</p> "> Figure 5
<p>Ground reference data showing the evolution of the fire fronts in the Yinanhe forest on: 28 April 2009 (<b>a</b>); 29 April 2009 (<b>b</b>); 3 May 2009 (<b>c</b>); and 11 May 2009 (<b>d</b>).</p> "> Figure 6
<p>Workflow of the spatio-temporal model (STM) based forest fire detection method.</p> "> Figure 7
<p>Background intensity prediction for frames with spatial heterogeneity.</p> "> Figure 8
<p>BTs distribution from band 7 for 13 IRS images. The red pixel is the inspected pixel in the window.</p> "> Figure 9
<p>Correlation coefficients between the inspected time series and the neighboring time series.</p> "> Figure 10
<p>Time series of fire pixels. The red marks represent fire points.</p> "> Figure 11
<p>BT images of band 7 (<b>a</b>) and band 8 (<b>b</b>) predicted using the spatio-temporal model (STM); and BT images of band 7 (<b>c</b>) and band 8 (<b>d</b>) predicted by averaging the neighboring pixels.</p> "> Figure 11 Cont.
<p>BT images of band 7 (<b>a</b>) and band 8 (<b>b</b>) predicted using the spatio-temporal model (STM); and BT images of band 7 (<b>c</b>) and band 8 (<b>d</b>) predicted by averaging the neighboring pixels.</p> "> Figure 12
<p>Frequency histograms of the background BT predictions and the actual BTs measurements from band 7 (<b>a</b>) and band 8 (<b>b</b>). “BT” denotes the actual background BT measurements, “ST” denotes the background BTs predicted using STM, and “MF” denotes the background BTs predicted by averaging the neighboring pixels.</p> "> Figure 13
<p>Ground reference data (<b>i</b>) and forest fire detection results by contextual algorithm (<b>ii</b>) and STM (<b>iii</b>) for the days: 28 April 2009 (<b>a</b>); 29 April 2009 (<b>b</b>); 3 May 2009 (<b>c</b>); and 11 May 2009 (<b>d</b>).</p> "> Figure 13 Cont.
<p>Ground reference data (<b>i</b>) and forest fire detection results by contextual algorithm (<b>ii</b>) and STM (<b>iii</b>) for the days: 28 April 2009 (<b>a</b>); 29 April 2009 (<b>b</b>); 3 May 2009 (<b>c</b>); and 11 May 2009 (<b>d</b>).</p> "> Figure 14
<p>The fire detection results using the contextual algorithm without the absolute fire pixel judgment produced a “cavity” in the detection area. The image was acquired on 29 April.</p> "> Figure 15
<p>Fire detection results of the image acquired on 29 April with different STM window sizes: (<b>a</b>) number of fire pixels; (<b>b</b>) commission error; and (<b>c</b>) omission error.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. HJ-1B Satellite Data
2.3. Ground Reference Data
3. Methodology
3.1. Contextual Algorithm
3.2. Overview of the Improved Algorithm
3.2.1. Data Preprocessing
3.2.2. Cloud Masking
3.2.3. Potential Fire Pixel Judgment
3.2.4. Relative Fire Pixel Judgment Based on STM
Background BT Prediction
Integration of Spatial and Temporal Information
Relative Fire Pixel Judgment
4. Results and Discussion
4.1. Goodness of Fit
4.2. Accuracy of Forest Fire Detection
5. Strengths and Limitations of the STM Method
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
STM | Spatio-temporal model |
MWIR | midwave infrared |
LWIR | longwave infrared |
NIR | near infrared |
SWIR | shortwave infrared |
BT | brightness temperature |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
DDM | Dynamic Detection Model |
RST | robust satellite technique |
ALICE | Absolute Local Index of Change of the Environment |
MODIS | Moderate Resolution Imaging Spectroradiometer |
CCD | charge-coupled device |
IRS | infrared camera sensor |
HJ-1 | Environment and Disaster Monitoring and Forecasting with a Small Satellite Constellation |
LAADS | Level 1 and Atmosphere Archive and Distribution System |
ROI | region-of-interest |
DN | digital number |
References
- Loehman, R.A.; Reinhardt, E.; Riley, K.L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees—A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 2014, 317, 9–19. [Google Scholar] [CrossRef]
- Martell, D.L. A Review of recent forest and wildland fire management decision support systems research. Curr. For. Rep. 2015, 1, 128–137. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- He, L.; Li, Z. Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: Application to AVHRR data. Int. J. Remote Sens. 2012, 33, 7047–7059. [Google Scholar] [CrossRef]
- Arino, O.; Casadio, S.; Serpe, D. Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens. Environ. 2012, 116, 226–238. [Google Scholar] [CrossRef]
- Hassini, A.; Benabdelouahed, F.; Benabadji, N. Active fire monitoring with level 1.5 MSG satellite images. Am. J. Appl. Sci. 2009, 6, 157. [Google Scholar] [CrossRef]
- Li, Z.; Nadon, S.; Cihlar, J. Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. Int. J. Remote Sens. 2000, 21, 3057–3069. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Amraoui, M.; DaCamara, C.C.; Pereira, J.M.C. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sens. Environ. 2010, 114, 1038–1052. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Roberts, G.J.; Wooster, M.J. Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1200–1218. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Laneve, G.; Castronuovo, M.M.; Cadau, E.G. Continuous monitoring of forest fires in the Mediterranean area using MSG. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2761–2768. [Google Scholar] [CrossRef]
- Koltunov, A.; Ustin, S.L. Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens. Environ. 2007, 110, 18–28. [Google Scholar] [CrossRef]
- Mazzeo, G.; Marchese, F.; Filizzola, C. A Multi-temporal Robust Satellite Technique (RST) for forest fire detection. In Proceedings of the International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007.
- Roberts, G.; Wooster, M.J. Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sens. Environ. 2014, 152, 392–412. [Google Scholar]
- China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/CN/Satellite/3064.shtml (accessed on 21 March 2016).
- Zhang, Y.; Liu, Z.; Wang, Y. Inversion of aerosol optical depth based on the CCD and IRS sensors on the HJ-1 satellites. Remote Sens. 2014, 6, 8760–8778. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.Q.; Li, Q. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2010, 53, 51–57. [Google Scholar] [CrossRef]
- Csiszar, I.; Morisette, J.T.; Giglio, L. Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in northern Eurasia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1757–1764. [Google Scholar] [CrossRef]
- Calle, A.; González-Alonso, F.; Merino De Miguel, S. Validation of active forest fires detected by MSG-SEVIRI by means of MODIS hot spots and AWiFS images. Int. J. Remote Sens. 2008, 29, 3407–3415. [Google Scholar] [CrossRef] [Green Version]
- Liew, S.C.; Shen, C.; Low, J. Validation of MODIS fire product over Sumatra and Borneo using high resolution SPOT imagery. In Proceedings of the 24th Asian Conference on Remote Sensing and 2003 International Symposium on Remote Sensing, Busan, South Korea, 9–13 October 2003.
- MODIS Policies. Available online: https://lpdaac.usgs.gov/user_services/modis_policies (accessed on 21 March 2016).
- Wang, S.D.; Miao, L.L.; Peng, G.X. An improved algorithm for forest fire detection using HJ data. Procedia Environ. Sci. 2012, 13, 140–150. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Zhou, J.X. Detection of the urban heat island in Beijing using HJ-1B satellite imagery. Sci. China Earth Sci. 2010, 53, 67–73. [Google Scholar] [CrossRef]
- Zhan, J.; Fan, C.; Li, T. A forest firespot automatic detection algorithm for HJ-IRS imagery. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 1321–1324. (In Chinese) [Google Scholar]
Satellite Platform | Sensor | Band | Spectral Range (μm) | Centre Wavelength (μm) | Spatial Resolution (m) | Amplitude Width (km) | Revisit Cycle (Days) |
---|---|---|---|---|---|---|---|
HJ-1B | CCD1 and CCD2 | 1 | 0.43−0.52 | 0.475 | 30 | 360 (single) 700 (double) | 4 |
2 | 0.52−0.60 | 0.56 | |||||
3 | 0.63−0.69 | 0.66 | |||||
4 | 0.76−0.90 | 0.83 | |||||
IRS | 5 | 0.75−1.10 | 0.92 | 150 | 720 | 4 | |
6 | 1.55−1.75 | 1.65 | |||||
7 | 3.50−3.90 | 3.70 | |||||
8 | 10.5−12.5 | 11.5 | 300 |
Data | Real Fire Pixels | Detected Fire Pixels | Commission Error (%) | Omission Error (%) | |||
---|---|---|---|---|---|---|---|
Contextual Algorithm | STM | Contextual Algorithm | STM | Contextual Algorithm | STM | ||
28 April 2009 | 196 | 228 | 223 | 18.86 | 14.80 | 5.61 | 3.06 |
29 April 2009 | 3311 | 3329 | 3518 | 7.15 | 9.24 | 6.64 | 3.36 |
03 May 2009 | 627 | 614 | 624 | 18.73 | 15.87 | 20.42 | 16.27 |
11 May 2009 | 24 | 29 | 19 | 24.14 | 0 | 8.33 | 20.83 |
Overall | 4158 | 4200 | 4384 | 9.45 | 9.91 | 8.68 | 5.56 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Meng, Y.; Yue, A.; Yuan, Y.; Liu, X.; Chen, J.; Zhang, M.; Chen, J. A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data. Remote Sens. 2016, 8, 403. https://doi.org/10.3390/rs8050403
Lin L, Meng Y, Yue A, Yuan Y, Liu X, Chen J, Zhang M, Chen J. A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data. Remote Sensing. 2016; 8(5):403. https://doi.org/10.3390/rs8050403
Chicago/Turabian StyleLin, Lei, Yu Meng, Anzhi Yue, Yuan Yuan, Xiaoyi Liu, Jingbo Chen, Mengmeng Zhang, and Jiansheng Chen. 2016. "A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data" Remote Sensing 8, no. 5: 403. https://doi.org/10.3390/rs8050403