Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel
"> Figure 1
<p>The study area (image source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community), the two flight lines (1 and 2) and the location of 18 regions of interest (ROIs). Each ROI, consisting of more than 10 pixels, represents hundreds of square meters of a uniform surface that was sampled and measured with an X-ray diffractometer (XRD) as described by Notesco <span class="html-italic">et al.</span> [<a href="#B7-remotesensing-08-00318" class="html-bibr">7</a>]. The XRD analysis results are shown below in <a href="#remotesensing-08-00318-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>(<b>a</b>) Spectra of regions of interest (ROIs) A and B from the normalized reflectance image and of clay minerals from a spectral library (Slib.) [<a href="#B12-remotesensing-08-00318" class="html-bibr">12</a>] for comparison, with the indicative absorption feature at 2.20 µm; (<b>b</b>) Spectra of ROIs C and D from the normalized reflectance image and of carbonates from the spectral library, with indicative absorption features at 2.32 and 2.34 µm of dolomite and calcite, respectively.</p> "> Figure 3
<p>Mineral map of the surface covered by the two flight lines in Makhtesh Ramon based on the SWIR (<b>a</b>) and LWIR (<b>b</b>) images. K—kaolinite, Ca—calcite, Do—dolomite, Q—quartz, F—feldspars, Cm—clay minerals, G—gypsum, C—carbonates, FQ—feldspars + quartz, GQC—gypsum + quartz (+ carbonates), QC—quartz + carbonates.</p> "> Figure 4
<p>Identification of minerals in both SWIR and LWIR data sets or in only one—SWIR or LWIR—data set.</p> "> Figure 5
<p>SWIR reflectance spectra (<b>a</b>) and LWIR approximate emissivity spectra (<b>b</b>) of ROIs A, B and E. The relevant features are emphasized with thick lines for the identified minerals. Atmospheric water vapor absorptions were omitted from SWIR reflectance spectra.</p> "> Figure 6
<p>Mineral map of the surface of Makhtesh Ramon on the geological map of the area (source: Sneh, A., Bartov, Y., Weissbrod, T. and Rosensaft, M., 1998. Geological Map of Israel, 1:200,000. Isr. Geol. Surv.). The table shows the rock types in the study area and the mineral classification based on the hyperspectral data: Q—quartz, Ca—calcite, Do—dolomite, QC—quartz + carbonates (calcite, dolomite), K—kaolinite, QK—quartz + kaolinite, F—feldspars, FQ—feldspars + quartz, G—gypsum, GQC—gypsum + quartz (+ carbonates).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Airborne Data
2.2. Data Analysis
2.2.1. SWIR Data Analysis
2.2.2. LWIR Data Analysis
3. Results and Discussion
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Crowley, J.K. Mapping playa evaporite minerals with AVIRIS Data: A first report from Death Valley, California. Remote Sens. Environ. 1993, 44, 337–356. [Google Scholar] [CrossRef]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Calvin, W.M.; Taranik, J.V. SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping. Remote Sens. Environ. 2003, 85, 48–63. [Google Scholar] [CrossRef]
- Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Dor, E.B. Mineral classification of land surface using multispectral LWIR and hyperspectral SWIR remote-sensing data: A case study over the Sokolov lignite open-pit mines, the Czech Republic. Remote Sens. 2014, 6, 7005–7025. [Google Scholar] [CrossRef]
- McDowell, M.L.; Kruse, F.A. Integrated visible to near infrared, short wave infrared, and long wave infrared spectral analysis for surface composition mapping near Mountain Pass, California. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI (Procedings of SPIE); Velez-Reyes, M., Kruse, F.A., Eds.; SPIE Press: Bellingham, WA, USA, 2015; Volume 9472. [Google Scholar]
- Notesco, G.; Ogen, Y.; Ben-Dor, E. Mineral classification of Makhtesh Ramon in Israel using hyperspectral longwave infrared (LWIR) remote-sensing data. Remote Sens. 2015, 7, 12282–12296. [Google Scholar] [CrossRef]
- Dor, E.B.; Kruse, F.A. Surface mineral mapping of Makhtesh Ramon Negev, Israel using GER 63 channel scanner data. Int. J. Remote Sens. 1995, 16, 3529–3553. [Google Scholar]
- The Specim AisaFENIX System. Available online: http://www.specim.fi/index.php/products/airborne/aisafenix (accessed on 28 January 2016).
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Hass, M.; Sutherland, G.B.B.M. The infra-red spectrum and crystal structure of gypsum. Proc. R. Soc. A 1956, 236A, 427–445. [Google Scholar] [CrossRef]
- The USGS Spectral Library. Available online: http://speclab.cr.usgs.gov/spectral-lib.html (accessed on 28 January 2016).
- The Arizona State University Spectral Library. Available online: http://speclib.asu.edu (accessed on 28 January 2016).
- Clark, R.N.; King, T.V.V.; Gorelick, N.S. Automatic continuum analysis of reflectance spectra. In Proceedings of the Third AIS Workshop, Pasadena, CA, USA, 2–4 June 1987; JPL Publication: Pasadena, CA, USA, 1987; pp. 138–142. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Dietz, J.B. Expert system-based mineral mapping in northern Death Valley, California/Nevada using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 309–336. [Google Scholar] [CrossRef]
- Kruse, F.A.; Thiry, M.; Hauff, P.L. Spectral identification (1.2–2.5 μm) and characterization of Paris basin kaolinite/smectite clays using a field spectrometer. In Proceedings of the 5th International Colloquium on Physical Measurements and Signatures in Remote Sensing, Courchevel, France, 14–18 January 1991; Volume 1, pp. 181–184.
- Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Observ. Geoinf. 2004, 5, 55–68. [Google Scholar] [CrossRef]
ROI | Hyperspectral Data Analysis 1,2 | XRD Analysis (from Major to Minor) 2 |
---|---|---|
A | Kaolinite | Calcite, Kaolinite, Quartz, Dolomite, Iron oxides |
B | , | Quartz, Calcite, Kaolinite, Iron oxides |
C | Calcite, | Calcite, Quartz, Dolomite, Kaolinite, Iron oxides |
D | Dolomite, Calcite | Dolomite, Calcite, Quartz |
E | , | Gypsum, Quartz, Brushite |
F | , Calcite, Dolomite | Quartz, Gypsum, Calcite, Dolomite, Brushite |
G | , | Albite-low, Quartz, Clinochlore |
H | , | Quartz, Calcite, Dolomite, Kaolinite, Iron oxides |
I | , Calcite, Dolomite | Quartz, Calcite, Kaolinite, Dolomite, Iron oxides |
J | , Calcite, Dolomite | Calcite, Quartz, Dolomite, Kaolinite, Iron oxides |
K | , | Quartz, Calcite, Iron oxides |
L | , , Calcite | Calcite, Quartz, Kaolinite, Iron oxides, Dolomite |
M | , Calcite, Dolomite | Quartz, Calcite, Dolomite |
N | , | Quartz, Calcite |
O | , , Calcite, Dolomite, | Dolomite, Gypsum, Calcite, Quartz, Kaolinite, Titanium dioxide |
P | , Calcite, Dolomite | Calcite, Quartz, Dolomite, Kaolinite |
Q | , , Dolomite, Calcite | Gypsum, Quartz, Dolomite, Calcite, Iron oxides, Titanium dioxide |
R | Calcite, Dolomite, , | Calcite, Quartz, Dolomite, Albite |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notesco, G.; Ogen, Y.; Ben-Dor, E. Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel. Remote Sens. 2016, 8, 318. https://doi.org/10.3390/rs8040318
Notesco G, Ogen Y, Ben-Dor E. Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel. Remote Sensing. 2016; 8(4):318. https://doi.org/10.3390/rs8040318
Chicago/Turabian StyleNotesco, Gila, Yaron Ogen, and Eyal Ben-Dor. 2016. "Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel" Remote Sensing 8, no. 4: 318. https://doi.org/10.3390/rs8040318
APA StyleNotesco, G., Ogen, Y., & Ben-Dor, E. (2016). Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel. Remote Sensing, 8(4), 318. https://doi.org/10.3390/rs8040318