Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data
"> Figure 1
<p>Study area: Lac Bam in Burkina Faso, West Africa, and footprint of the used datasets: TerraSAR-X (dark red), RapidEye (yellow), and WorldView-2 (blue).</p> "> Figure 2
<p>(<b>a</b>) Location of the GPS data (from 15–18 October 2013 to 25–28 October 2015) with the (<b>a</b>) RapidEye image from 19 October 2013 as backdrop (©BlackBridge 2013, Berlin, Germany), including areas visited in greater detail (white circles), GPS/photo points on land (yellow dots), GPS/photo points from the boat tracks on the open water (blue dots), and on water with flooded vegetation (green dots); (<b>b</b>) floating water lilies; (<b>c</b>) shoreline including soil exposed after water retreat and flooded vegetation in the background; (<b>d</b>) irrigated fields; (<b>e</b>) flooded and floating vegetation; (<b>f</b>) water, flooded vegetation, and an island in the background, seen from the eastern shoreline; (<b>g</b>) barren land; (<b>h</b>) flooded trees next to the dam in the south; (<b>i</b>) motor pump at the shoreline; (<b>j</b>) open water seen from the boat southwards, (photos by L. Moser, F. Betorz Martìnez, R. Ouedraogo).</p> "> Figure 3
<p>Processing workflow.</p> "> Figure 4
<p>From left to right: A RapidEye false color composite (band 5-3-2, <span class="html-italic">i.e.</span>, NIR-red-green) reference image from 19 October 2013 (©BlackBridge 2013); the four Kennaugh elements derived from the dual-pol TSX image from 20 October 2013 (©DLR 2013): K<sub>0</sub> (the total intensity as sum of HH plus VV intensity); K<sub>3</sub> (difference double-bounce minus surface scattering); K<sub>4</sub> (difference HH minus VV intensity); K<sub>7</sub> (phase shift between double-bounce and surface scattering).</p> "> Figure 5
<p>Scatterplots for the Kennaugh elements K<sub>0</sub>, K<sub>3</sub>, and K<sub>4</sub> displaying the mean value of each class of all 135 training and validation areas per time step: open water (blue), flooded vegetation (green), irrigated cultivation (red), and land (yellow), for four time steps (t1–t4). The Kennaugh elements are displayed in normalized scaling to 16 bit unsigned integer.</p> "> Figure 6
<p>Temporal signature analysis from September 2014 until April 2015 for the Kennaugh elements K<sub>0</sub>, K<sub>3</sub>, K<sub>4</sub>, and K<sub>7</sub>: W (dark blue); W–L (light blue); V–L (light green); V–F (green); L–F/F–L (dark red); L1 (dark green); L2 (beige).</p> "> Figure 7
<p>Spatio-temporal profiles for different land cover types along the spatial profile with time steps of TSX Kennaugh elements visualized in the color scale. Optical reference images from WorldView-2 (24 September 2014) (©DigitalGlobe 2014 provided by EUSI, Westminster, CO, USA), and RapidEye (7 April 2015) (©BlackBridge 2014, Berlin, Germany) define the land cover during the start and end point of the temporal development.</p> "> Figure 8
<p>Time series of eight selected HH-VV polarized TerraSAR-X (TSX) StripMap acquisitions from (<b>a</b>) 26 August 2013; (<b>b</b>) 28 September 2013; (<b>c</b>) 31 October 2013; (<b>d</b>) 3 December 2013; as well as (<b>e</b>) 5 January 2014; (<b>f</b>) 7 February 2014; (<b>g</b>) 12 March 2014; and (<b>h</b>) 14 April 2014 (©DLR 2013–2015). False color composites have been created from the Kennaugh elements (K<sub>4</sub>-K<sub>0</sub>-K<sub>3</sub>). Open water appears in blue/purple, green colors stand for vegetated or irrigated areas, and pink colors are dominant in areas of flooded vegetation.</p> "> Figure 9
<p>Monotemporal classification for eight selected time steps with intervals of 33 days between the data: open water (blue); flooded/floating vegetation (green); irrigated fields (red); and dry land (beige) for (<b>a</b>) 26 August 2013; (<b>b</b>) 28 September 2013; (<b>c</b>) 31 October 2013; (<b>d</b>) 3 December 2013; as well as (<b>e</b>) 5 January 2014; (<b>f</b>) 7 February 2014; (<b>g</b>) 12 March 2014; and (<b>h</b>) 14 April 2014.</p> "> Figure 10
<p>Cumulative season duration areas of 21 time steps of the year 2014–2015 for (<b>a</b>) open water; (<b>b</b>) flooded/floating vegetation; (<b>c</b>) irrigated fields; and (<b>d</b>) wetland, and (<b>e</b>–<b>h</b>) selected focus region for the year 2013–2014 below.</p> "> Figure 11
<p>Time series of the wetland area per class for (<b>a</b>) 2013–2014 and (<b>b</b>) 2014–2015: open water (blue), flooded/floating vegetation (green), irrigated fields (dark red), and rain-fed cultivation (light red).</p> "> Figure 12
<p>Multitemporal classification for the time series stack of the year 2014–2015 resulting in seven change classes: open water (W); water to land/soil (W–L); flooded vegetation to land/soil (V–L); flooded vegetation to irrigated fields (V–F); and irrigated fields to land/soil or land/soil to irrigated fields (F–L/L–F); land with permanent vegetation (L1); and land with soil, rock, urban (L2). Two sites representing all classes are displayed in zoom windows: The northern site (<b>a</b>) features open water, the change from water to land, and large areas of cultivation in the east. The centrally located site (<b>b</b>) shows permanent open water, large areas that changed from flooded vegetation to land or to fields, and a permanently vegetated area in the north-east. Optical reference images (©DigitalGlobe 2014 provided by EUSI) for t1, t3, and t4 serve for comparison with the multitemporal classification results.</p> "> Figure 13
<p>Multitemporal classification results using as input (<b>a</b>) dual-polarimetric SAR intensity and phase data <span class="html-italic">vs.</span> (<b>b</b>) single-polarimetric SAR intensity (K<sub>0</sub>) only to classify the following change classes: open water—stable (dark blue); water to land (light blue); flooded vegetation to land (light green); flooded vegetation to field (green); irrigated fields (red); land with permanent vegetation—stable (dark green); and land with soil, rock, urban (beige).</p> ">
Abstract
:1. Introduction
1.1. Remote Sensing of Wetlands in Semi-Arid Africa
1.2. Wetland Monitoring Using Single-Polarized SAR Data
1.3. Wetland Monitoring Using Multi-Polarized SAR Data
1.4. Alternative Remote Sensing Techniques for Wetland Monitoring
1.5. Objectives
2. Materials
2.1. Study Area—Lac Bam
2.2. Synthetic Aperture Radar Data
2.3. Optical Reference Data
2.4. GPS Reference Data
3. Methodology
3.1. SAR Data Processing to Kennaugh Elements
3.2. Optical Reference Data Processing
3.3. Classification
4. Selection and Temporal Analysis of Training and Validation Data
4.1. Monotemporal Training and Validation Data
4.2. Multitemporal Training and Validation Data
4.3. Temporal Interpretation of the Kennaugh Elements
5. Classification Results and Discussion
5.1. Monotemporal Classification Results and Validation
5.1.1. Results of Monotemporal Classification
5.1.2. Validation of Monotemporal Classification
5.1.3. Discussion of the Monotemporal Classification Results
5.2. Spatio-Temporal Analysis of the Monotemporal Classification Results
5.3. Multitemporal Classification Results and Validation
5.3.1. Results of Multitemporal Classification
5.3.2. Validation of Multitemporal Classification
5.3.3. Comparison of Single- and Dual-Pol Multitemporal Classification
5.3.4. Discussion of the Multitemporal Classification Results
5.4. Transferability and Outlook
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moser, L.; Schmitt, A.; Voigt, S.; Schoepfer, E. Remote sensing of wetland dynamics as indicators of water availability in Semi-Arid Africa. In Earth Observation for Land and Emergency Monitoring—Innovative Concepts for Environmental Monitoring from Space; Balzter, H., Ed.; Wiley: London, UK, 2015. (In press) [Google Scholar]
- Ouedraogo, A. Ambroise Ouédraogo, Directeur du Projet de Restauration du Lac Bam: “le Lac a Perdu Actuellement les ¾ de ses Ressources en Eau”. Available online: http://lefaso.net/spip.php?article60373 (accessed on 10 March 2016).
- Ramsar. Ramsar Convention on Wetlands. Available online: http://www.ramsar.org/ (accessed on 10 March 2016).
- Ouedraogo, R. Fish and Fisheries Prospective in Arid Inland Waters of Burkina Faso, West Africa; University of Natural Resources and Life Sciences: Vienna, Austria, 2010. [Google Scholar]
- Davies, P.M. Lake Bam Burkina Faso: Assessment of Status, Degradation and Potential for Restoration; International River Foundation: Spring Hill, QLD, Australia, 2005. [Google Scholar]
- Gallant, A.L. The challenges of remote monitoring of wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Gessner, U.; Machwitz, M.; Esch, T.; Tillack, A.; Naeimi, V.; Kuenzer, C.; Dech, S. Multi-sensor mapping of West African land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data. Remote Sens. Environ. 2015, 164, 282–297. [Google Scholar] [CrossRef]
- Bartsch, A.; Wagner, W.; Scipal, K.; Pathe, C.; Sabel, D.; Wolski, P. Global monitoring of wetlands—The value of ENVISAT ASAR global mode. J. Environ. Manag. 2009, 90, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Lamarche, C.; Bontemps, S.; Wegmüller, U.; Kalogirou, V.; Arino, O.; Defourny, P. Introducing a global dataset of open permanent water bodies. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013.
- Santoro, M.; Wegmuller, U. Multi-temporal synthetic aperture radar metrics applied to map open water bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [Google Scholar] [CrossRef]
- Karvonen, J.; Simila, M.; Makynen, M. Open water detection from Baltic Sea ice Radarsat-1 SAR imagery. IEEE Geosci. Remote Sens. Lett. 2005, 2, 275–279. [Google Scholar] [CrossRef]
- Brisco, B.; Short, N.; Sanden, J.V.D.; Landry, R.; Raymond, D. A semi-automated tool for surface water mapping with RADARSAT-1. Can. J. Remote Sens. 2009, 35, 336–344. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. RADARSAT-2 beam mode selection for surface water and flooded vegetation mapping. Can. J. Remote Sens. 2014, 40, 135–151. [Google Scholar]
- Gstaiger, V.; Huth, J.; Gebhardt, S.; Wehrmann, T.; Kuenzer, C. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. Int. J. Remote Sens. 2012, 33, 7291–7304. [Google Scholar] [CrossRef]
- Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X water indication mask: Generation and first evaluation results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A.; Dech, S. Comparing four operational SAR-based water and flood detection approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [Google Scholar] [CrossRef]
- Brisco, B.; Touzi, R.; van der Sanden, J.J.; Charbonneau, F.; Pultz, T.; D’Iorio, M. Water resource applications with RADARSAT-2—A preview. Int. J. Digit. Earth 2008, 1, 130–147. [Google Scholar] [CrossRef]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong delta: Envisat-ASAR-WSM based time series analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Huth, J.; Martinis, S.; Lu, L.; Dech, S. SAR time series for the analysis of inundation patterns in the Yellow River Delta, China. In Remote Sensing Time Series; Springer: New York, NY, USA, 2015; pp. 427–441. [Google Scholar]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
- Henderson, F.M.; Lewis, A.J. Radar detection of wetland ecosystems: A review. Int. J. Remote Sens. 2008, 29, 5809–5835. [Google Scholar] [CrossRef]
- Brisco, B.; Schmitt, A.; Murnaghan, K.; Kaya, S.; Roth, A. SAR polarimetric change detection for flooded vegetation. Int. J. Digit. Earth 2011, 6, 103–114. [Google Scholar] [CrossRef]
- Schmitt, A.; Brisco, B. Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Gallant, A.L.; Kaya, S.G.; White, L.; Brisco, B.; Roth, M.F.; Sadinski, W.; Rover, J. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric Synthetic Aperture Radar (SAR) data. Water 2014, 6, 694–722. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Touzi, R.; Deschamps, A.; Rother, G. Wetland characterization using polarimetric RADARSAT-2 capability. Can. J. Remote Sens. 2007, 33, 56–67. [Google Scholar] [CrossRef]
- Koch, M.; Schmid, T.; Reyes, M.; Gumuzzio, J. Evaluating full polarimetric C- and L-band data for mapping wetland conditions in a semi-arid environment in Central Spain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1033–1044. [Google Scholar] [CrossRef]
- Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Wang, J.; Xiao, R. The influence of polarimetric parameters and an object-based approach on land cover classification in coastal wetlands. Remote Sens. 2014, 6, 12575–12592. [Google Scholar] [CrossRef]
- Dabboor, M.; White, L.; Brisco, B.; Charbonneau, F. Change detection with compact polarimetric SAR for monitoring wetlands. Can. J. Remote Sens. 2015, 41, 408–417. [Google Scholar] [CrossRef]
- Betbeder, J.; Rapinel, S.; Corgne, S.; Pottier, E.; Hubert-Moy, L. TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS J. Photogramm. Remote Sens. 2015, 107, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Pope, K.O.; Rejmankova, E.; Paris, J.F.; Woodruff, R. Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sens. Environ. 1997, 59, 157–166. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef]
- Schmitt, A.; Leichtle, T.; Huber, M.; Roth, A. On the use of dual-Co Terrasar-X data for wetland monitoring. In Proceedings of the XXII ISPRS Congress, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, VIC, Australia, 31 August–4 September 2012; pp. 341–344.
- Rebelo, L.-M. Eco-hydrological characterization of inland wetlands in Africa using L-band SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 554–559. [Google Scholar] [CrossRef]
- Schmid, T.; Koch, M.; Gumuzzio, J. Multisensor approach to determine changes of wetland characteristics in semiarid environments (Central Spain). IEEE Trans. Geosci. Remote Sens. 2005, 43, 2516–2525. [Google Scholar] [CrossRef]
- Ozesmi, S.; Bauer, M. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Riordan, K.; Powell, R.B.; Miller, N.; Nowels, M. Improving wetland characterization with multi-sensor, multi-temporal SAR and optical/infrared data fusion. In Advances in Geoscience and Remote Sensing; Jedlovec, G., Ed.; InTech: West Palm Beach, FL, USA, 2009; pp. 679–708. [Google Scholar]
- Na, X.; Zang, S.; Zhang, Y.; Liu, L. Wetland mapping and flood extent monitoring using optical and radar remotely sensed data and ancillary topographical data in the Zhalong National Natural Reserve, China. Proc. SPIE 2013. [Google Scholar] [CrossRef]
- Dostálová, A.; Doubková, M.; Sabel, D.; Bauer-Marschallinger, B.; Wagner, W. Seven years of Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of surface soil moisture over Africa. Remote Sens. 2014, 6, 7683–7707. [Google Scholar] [CrossRef]
- Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R. Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sens. Environ. 2008, 112, 681–696. [Google Scholar] [CrossRef]
- Chou, X.; Yun, S.; Zi, W. InSAR analysis over Yellow River Delta for mapping water-level changes over wetland. In Proceedings of the 18th IEEE International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5.
- Hong, S.-H.; Wdowinski, S.; Kim, S.-W. Evaluation of TerraSAR-X observations for wetland InSAR application. IEEE Trans. Geosci. Remote Sens. 2010, 48, 864–873. [Google Scholar] [CrossRef]
- Chou, X.; Yun, S.; Ji, X.; Zi, W.; Liang, F. Analysis of ALOS PALSAR InSAR data for mapping water level changes in Yellow River Delta wetlands. Int. J. Remote Sens. 2013, 34, 2047–2056. [Google Scholar]
- Frappart, F.; Fatras, C.; Mougin, E.; Marieu, V.; Diepkilé, A.; Blarel, F.; Borderies, P. Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa. Phys. Chem. Earth Parts A/B/C 2015, 83, 96–110. [Google Scholar] [CrossRef]
- Moser, L.; Voigt, S.; Schoepfer, E.; Palmer, S. Multitemporal wetland monitoring in Sub-Saharan West-Africa using medium resolution optical satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3402–3415. [Google Scholar] [CrossRef]
- Ramsar. The Ramsar Sites: Ramsar Sites Information Service Database. Available online: http://www.ramsar.org/sites-countries/the-ramsar-sites (accessed on 10 March 2016).
- Moser, L.; Voigt, S.; Schoepfer, E. Monitoring of critical water and vegetation anomalies of sub-Saharan west-African wetlands. In Proceedings of the 2014 International Geoscience and Remote Sensing Symposium (IGARSS 2014), Québec City, QC, Canada, 13–18 July 2014; pp. 3842–3845.
- Ouedraogo, R.; National Institute for Environment and Agricultural Research (INERA), Ouagadougou, Burkina Faso; Tigre, N.; Canton of Datinga (Zimtanga), Province of Bam, Burkina Faso. Personal Communication, 2013.
- Schmitt, A.; Brisco, B.; Kaya, S.; Roth, A.; Mueller, A. Wetlands monitoring with Polarimetric SAR change detection methods. In Proceedings of the 34th International Symposium for Remote Sensing of the Environment (ISRSE), Sydney, NSW, Australia, 10–15 April 2011; pp. 10–14.
- Schmitt, A.; Wendleder, A.; Roth, A.; Brisco, B. Water extent monitoring and water level estimation using multi-frequency, multi-polarized, and multi-temporal SAR data. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1175–1178.
- Huber, M.; Wessel, B.; Roth, A. The TerraSAR-X orthorectification service and its benefit for land use applications. In Proceedings of the IGARSS 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 1922–1925.
- Müller, R.; Krauß, T.; Schneider, M.; Reinartz, P. Automated georeferencing of optical satellite data with integrated sensor model improvement. Photogramm. Eng. Remote Sens. 2012, 78, 61–74. [Google Scholar] [CrossRef]
- Krauß, T.; d’Angelo, P.; Schneider, M.; Gstaiger, V. The fully automatic optical processing system CATENA at DLR. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 21–24 May 2013; pp. 177–181.
- Richards, J.; Jia, X. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 1999; p. 240. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986; p. 379. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Sanchez, A.; Malak, D.A.; Guelmami, A.; Perennou, C. Development of an indicator to monitor mediterranean wetlands. PLoS ONE 2015, 10, e0122694. [Google Scholar] [CrossRef] [PubMed]
TerraSAR-X | RapidEye | WorldView-2 | GeoEye-1 | ||
---|---|---|---|---|---|
Wavelength | 3.1 cm | Spectral Bands | 440–510 nm (blue) 520–590 nm (green) 630–685 nm (red) 690–730 nm (redEdge) 760–850 (NIR) | 442–515 nm (blue) 506–586 nm (green) 624–694 nm (red) 765–901 (NIR) | 450–510 nm (blue) 510–580 nm (green) 655–690 nm (red) 780–920 (NIR) |
Mode | StripMap | ||||
Polarization | HH-VV dual-pol | ||||
Frequency | X-band (9.6 GHz) | Dynamic range | 12 bits/pixel | 11 bits/pixel | 11 bits/pixel |
Resolution | 6.60 m (azimuth), 2.49 m (range) | Resolution | 6.5 m (ms) | 2 m (ms), 0.5 m (pan) | 2 m (ms), 0.5 m (pan) |
Pixel spacing | 5 m (resampled) | Pixel spacing | 5 m (resampled) | 0.5 m (pansharpened) | 0.5 m (pansharpened) |
Inc. angle | 27.4°–28.9° | Off-nadir angle | 2.5°–21.2° (different acquisitions) | 22.0° | 39.2° |
Swath width | 15 km | Swath width | 77 km | 16.4 km | 15.2 km |
Pass direction | Ascending, right-looking | Pass direction | Descending | Descending | Descending |
Product level | Level 1B (single Look Slant Range Complex (SSC)) | Product level | Level 1B (basic) | Level 1B (ortho-ready standard) | Level 1B (ortho-ready standard) |
2013–2014 | 2014–2015 | |||||
---|---|---|---|---|---|---|
No | TerraSAR-X Data | Optical Reference Data | GPS/Photo Data | TerraSAR-X Data | Optical Reference Data | GPS/Photo Data |
1 | 6 September 2013 | 4 September 2014 | ||||
2 | * 17 September 2013 | 15 September 2014 | ||||
3 | 28 September 2013 | * 26 September 2014 | 24 September (WV-2) | |||
4 | 9 October 2013 | 7 October 2014 | ||||
5 | 20 October 2013 | 19 October (RE) | 15/18 October | 18 October 2014 | ||
6 | 31 October 2013 | 29 October 2014 | ||||
7 | 11 November 2013 | 9 November 2014 | 8 November (RE) | |||
8 | 22 November 2013 | 20 November 2014 | ||||
9 | 3 December 2013 | 1 December 2014 | ||||
10 | 14 December 2013 | 12 December 2014 | ||||
11 | 25 December 2013 | 23 December 2014 | ||||
12 | 5 January 2014 | * 3 January 2015 | 5 January (RE) | |||
13 | 16 January 2014 | 14 January 2015 | ||||
14 | 27 January 2014 | 25 January 2015 | ||||
15 | 7 February 2014 | 7 February (RE) | 5 February 2015 | 2 February (RE) | ||
16 | 18 February 2014 | 16 February 2015 | ||||
17 | 1 March 2014 | 27 February 2015 | ||||
18 | 12 March 2014 | 10 March 2015 | ||||
19 | 23 March 2014 | 21 March 2015 | ||||
20 | 3 April 2014 | 7 April (RE) | 1 April 2015 | 30 March (RE) | ||
21 | 14 April 2014 | 12 April 2015 | 15 April (GE-1) | |||
25/28 October |
Change Class | Stable/Dynamic | t1 (24 September 2014) | t2 (8 November 2014) | t3 (2 February 2015) | t4 (15 April 2015) |
---|---|---|---|---|---|
W | stable | W | W | W | W |
W–L | dynamic | W | W | W | L |
W | W | L | L | ||
V–L | dynamic | V | V | V | L |
V | V | L | L | ||
V–F | dynamic | V | V | L | F |
F–L/L–F | dynamic | F | L | F | L |
L | F | F | L | ||
L | L | F | L | ||
L | L | L | F | ||
L1 | stable | L | L | L | L |
L2 | stable | L | L | L | L |
W | V | F | L | Sum AOIs per Time Step | |
---|---|---|---|---|---|
Training t1 | 25 (av. t1–t4) | 25 (av. t1–t2) | 25 (av. t1–t4) | 100 (t1–t4) | |
Training t2 | 25 (av. t1–t4) | 25 (av. t1–t2) | 25 (av. t1–t4) | ||
Training t3 | 25 (av. t1–t4) | 25 (t3 only) | 25 (av. t1–t4) | ||
Training t4 | 25 (av. t1–t4) | 25 (av. t1–t4) | |||
Validate t1 | 20 (t1–t4) | 20 (t1–t2) | 20 (t1–t4) | 60 (t1) | |
Validate t2 | 20 (t1–t4) | 20 (t1–t2) | 20 (t1–t4) | 60 (t2) | |
Validate t3 | 20 (t1–t4) | 20 (t3 only) | 20 (t1–t4) | 60 (t3) | |
Validate t4 | 20 (t1–t4) | 20 (t4 only) | 20 (t1–4) | 60 (t4) | |
Sum AOIs per class | 45 (t1–t4) | 45 (t1–t2) | 65 (val. t3 differs t4) | 45 (t1–t4) |
W Stable | W–L Dynamic | V–L Dynamic | V–F Dynamic | F–L/L–F Dynamic | L1 Stable | L2 Stable | Sum AOIs Multitemp | |
---|---|---|---|---|---|---|---|---|
Training Multitemp | 25 | 25 | 25 | 25 | 25 | 8 | 17 | 150 |
Validate Multitemp | 20 | 20 | 20 | 20 | 20 | 7 | 13 | 120 |
Sum AOIs per Class | 45 | 45 | 45 | 45 | 45 | 15 | 30 |
T1 (24 September 2014) | T2 (8 November 2014) | T3 (2 February 2015) | T4 (15 April 2015) | |||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
Open Water | 99.9 | 99.1 | 100.0 | 99.3 | 99.9 | 99.2 | 95.1 | 90.0 |
Flooded Veg. | 94.9 | 83.6 | 91.2 | 84.2 | N/A | N/A | N/A | N/A |
Irrigated fields | N/A | N/A | N/A | N/A | 82.1 | 68.6 | 69.2 | 66.1 |
Land | 56.2 | 93.4 | 61.7 | 91.6 | 60.4 | 85.4 | 63.2 | 74.1 |
OA (%) | 85.5 | 86.3 | 83.8 | 79.7 |
W (st.) | W–L (dyn.) | V–L (dyn.) | V–F (dyn.) | F (dyn.) | L1 (st.) | L2 (st.) | PA (%) | UA (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Water | (stable) | 4407 | 535 | 0 | 0 | 0 | 0 | 0 | 100.0 | 89.2 |
Water to Land | (dynamic) | 0 | 996 | 0 | 0 | 0 | 0 | 0 | 58.8 | 100.0 |
Flooded Veg. to Land | (dynamic) | 0 | 129 | 2196 | 106 | 7 | 3 | 8 | 90.1 | 89.7 |
Flooded Veg. to Field | (dynamic) | 0 | 2 | 222 | 1102 | 39 | 20 | 85 | 84.9 | 75.0 |
Land (Perm. Veg.) | (stable) | 0 | 0 | 8 | 14 | 1092 | 41 | 156 | 86.4 | 83.3 |
Irrigated Fields | (dynamic) | 0 | 29 | 1 | 60 | 79 | 2010 | 46 | 96.8 | 90.3 |
Land (Soil, Urban) | (stable) | 0 | 4 | 10 | 16 | 47 | 2 | 1346 | 82.0 | 94.5 |
K0-K3-K4-K7 | K0 | |||
---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | |
water (stable) | 100.0 | 88.5 | 98.7 | 100.0 |
water to land (dyn.) | 56.6 | 100.0 | 98.1 | 98.7 |
flooded veg. to land (dyn.) | 90.1 | 89.7 | 79.0 | 87.0 |
flooded veg. to field (dyn.) | 84.9 | 75.0 | 44.7 | 42.1 |
land/perm. veg. (stable) | 86.4 | 83.3 | 57.6 | 49.5 |
irrigated fields (dyn.) | 96.8 | 90.3 | 79.0 | 83.7 |
land/soil/urban (stable) | 82.0 | 94.5 | 78.9 | 73.7 |
OA (%) | 88.5 | 82.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, L.; Schmitt, A.; Wendleder, A.; Roth, A. Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sens. 2016, 8, 302. https://doi.org/10.3390/rs8040302
Moser L, Schmitt A, Wendleder A, Roth A. Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sensing. 2016; 8(4):302. https://doi.org/10.3390/rs8040302
Chicago/Turabian StyleMoser, Linda, Andreas Schmitt, Anna Wendleder, and Achim Roth. 2016. "Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data" Remote Sensing 8, no. 4: 302. https://doi.org/10.3390/rs8040302