Pi-SAR-L2 Observation of the Landslide Caused by Typhoon Wipha on Izu Oshima Island
"> Figure 1
<p>After the landslide: configuration of Pi-SAR-L2 observations performed using four different observational directions (L203201–L203204) on 22 October 2013. Before the landslide: Pi-SAR-L observation (L03801) performed using same flight course as L203201 on 30 August 2000.</p> "> Figure 2
<p>Optical image of the disaster area. Red polygon represents the landslide map, produced by GSI [<a href="#B8-remotesensing-08-00282" class="html-bibr">8</a>]. (<b>a</b>) Before the disaster (1 June 2010); (<b>b</b>) after the disaster (17 October 2013). The green line indicates the border between forest and other areas obtained from GSI, and the light blue polygon represents the field experiment sites.</p> "> Figure 3
<p>Site photos with a needle profiler. (<b>a</b>) Site 1; (<b>b</b>) Site 2.</p> "> Figure 4
<p>Four-component decomposition image obtained by Pi-SAR-L2 (ID: L203201, R: Double-bounce scattering G: Volume scattering B: Surface scattering). The main landslide area is surrounded by the red rectangle. The field experiment sites are represented by red circles.</p> "> Figure 5
<p>Full polarimetric parameters after the disaster and the difference between before and after the disaster. (<b>a</b>) γ<sub>(HH+VV)-(HH−VV)</sub>; (<b>b</b>) Δγ<sub>(HH+VV)-(HH−VV)</sub>; (<b>c</b>) α; and (<b>d</b>) Δα.</p> "> Figure 6
<p>(<b>a</b>–<b>c</b>) entropy, α, and anisotropy obtained from three different observational directions. The landslide area used for validation [<a href="#B7-remotesensing-08-00282" class="html-bibr">7</a>] is shown by red lines in (<b>a</b>). The field experiment sites are represented by light blue circles.</p> "> Figure 7
<p>Histogram of α for Site 2 and a forest near Site 2.</p> "> Figure 8
<p>The difference in entropy/α/anisotropy before and after the disaster for the landslide area. Red: Δentropy Green: Δα Blue: Δanisotropy.</p> "> Figure 9
<p>An outline of the detection accuracy using Δγ<sub>HH-VV</sub> and Δα.</p> "> Figure 10
<p>σ° obtained from Pi-SAR-L2 and estimated from theoretical models.</p> ">
Abstract
:1. Introduction
- (1)
- hey comprise full polarimetric data observed just after the disaster (landslide).
- (2)
- They were observed from four different observational directions at the same time after the disaster. One of the directions was also observed before the disaster.
2. Pi-SAR-L2 Data and Field Experiment
3. Results
3.1. Landslide Area Detection with Full Polarimetric Parameters
3.2. Landslide Area Detection in Three Different Observational Directions
4. Discussion
5. Conclusions
- ✓
- The detection accuracy is almost the same when using the parameters after the disaster, and using the difference between the parameters before and after the disaster.
- ✓
- Producer’s accuracies are improved, and the accuracy changes from 35.8% to 52.2% for the α parameter (improved by 16.4%), and from 33.8% to 49.5% for the γ(HH)-(VV) parameters (improved by 15.7%), when evaluated by the α and γ(HH)-(VV) parameters, if the forested area before the disaster is identified.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watanabe, M.; Yonezawa, C.; Iisaka, J.; Sato, M. ALOS/PALSAR full polarimetric observations of the Iwate-Miyagi Nairiku earthquake of 2008. Int. J. Remote Sens. 2012, 33, 1234–1245. [Google Scholar] [CrossRef]
- Yonezawa, C.; Watanabe, M.; Saito, G. Polarimetric decomposition analysis of ALOS-PALSAR observation data before and after a landslide event. Remote Sens. 2012, 4, 2314–2328. [Google Scholar] [CrossRef]
- Czuchlewski, K.R.; Weissel, J.K.; Kim, Y. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. J. Geophys. Res. 2003, 108, 1–10. [Google Scholar] [CrossRef]
- Rodriguez, K.M.; Weissel, J.K.; Kim, Y. Classification of landslide surfaces using fully polarimetric SAR: Examples from Taiwan. IEEE Proc. Int. Geosci. Remote Sens. Symp. 2002, 2002, 2918–2920. [Google Scholar]
- Shimada, M.; Watanabe, M.; Kawano, N.; Ohki, M.; Motooka, T.; Wada, W. Detecting mountainous landslides by SAR polarimetry: A comparative study using Pi-SAR-L2 and X band SARs. Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn. 2014, 12, 9–15. [Google Scholar] [CrossRef]
- Shibayama, T.; Yamaguchi, Y.; Yamada, H. Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence Angle. Remote Sens. 2015, 7, 15424–15442. [Google Scholar] [CrossRef]
- Geospatial Information Authority of Japan. Available online: http://www.gsi.go.jp/BOUSAI/h25-taihu26-index.html (accessed on 18 March 2015).
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geoscie. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Pottier, E.; Ferro-Famil, L.; Allain, S.; Cloude, S.; Hajnsek, I.; Papathanassiou, K.; Moreira, A.; Williams, M.; Minchella, A.; Lavalle, M.; et al. Overview of the PolSARpro V4.0 software. The open-source toolbox for polarimetric and interferometric polarimetric SAR data processing. IEEE Proc. Int. Geosci. Remote Sens. Symp. 2009, 2009, 936–939. [Google Scholar]
- Geospatial Information Authority of Japan. Available online: http://nlftp.mlit.go.jp/ksj-e/index.html (accessed on 18 March 2015).
- Chen, M.F.; Fung, A.K. A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering model. Radio Sci. 1988, 23, 163–170. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Kouyate, F.; Fung, A.K.; Sieber, A.J. A backscatter model for a randomly perturbed periodic surface. IEEE Trans. Geosci. Remote Sens. 1982, GRS-20, 518–528. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user's perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
Items | Pi-SAR | Pi-SAR-L2 |
---|---|---|
Band width | 50 MHz | 85 MHz |
Sampling frequency | 61.275 MHz | 100 MHz |
Operation height | 6–12 km | 6–12 km |
Spatial resolution (slant) | 2.5 m | 1.76 m |
Spatial resolution (azimuth, 4look *) | 3.2 m | 3.2 m |
Noise equivalent sigma zero | −30 dB | −35 dB |
Incidence angle | 10~60 deg. | 10–62 deg. |
Polarimetry | full | full |
Power | 3.5 KW | 3.5 KW |
Area | Full Polarimetric Parameters | Using Parameters Obtained after the Disaster | Using the Difference in the Parameter Values before and after the Disaster | ||
---|---|---|---|---|---|
User’s Accuracy (%) | Producer’s Accuracy (%) | User’s Accuracy (%) | Producer’s Accuracy (%) | ||
All areas near the landslide | α | 61.8 | 38.4 | 60.9 | 35.8 |
γ(HH)-(VV) | 59.5 | 34.0 | 58.7 | 33.8 | |
Entropy | 47.7 | 11.8 | 58.0 | 26.8 | |
γ(HH+VV)-(HH−VV) | 50.5 | 11.7 | 57.3 | 25.9 | |
Forest areas before the landslide identified. | α | 66.7 | 52.1 | 64.8 | 52.2 |
γHH-VV | 65.0 | 54.6 | 64.3 | 49.5 |
α | γ(HH)-(VV) | γ(HH+VV)-(HH−VV) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | St. dev. | Diff. | Mean | St. dev. | Diff. | Mean | St. dev. | Diff. | ||
Site 1 | L203201 | 33.1 | 2.6 | −0.1 | 0.70 | 0.05 | 0.06 | 0.50 | 0.09 | 0.11 |
L203203 | 33.2 | 5.4 | 0.64 | 0.11 | 0.39 | 0.10 | ||||
Site 2 | L203201 | 31.7 | 2.2 | −12.3 | 0.77 | 0.05 | 0.32 | 0.61 | 0.07 | 0.27 |
L203203 | 44.0 | 4.1 | 0.45 | 0.14 | 0.33 | 0.13 | ||||
Forest near Site 2 | L203201 | 49.7 | 2.1 | 1.6 | 0.34 | 0.08 | −0.01 | 0.26 | 0.08 | 0.03 |
L203203 | 48.1 | 2.5 | 0.35 | 0.08 | 0.23 | 0.08 |
L203201 | L203202 | L203203 | ||
---|---|---|---|---|
Accuracy (%) | User’s | 66.7 | 60.3 | 59.1 |
Producer’s | 52.1 | 27.3 | 16.4 |
Parameters | Local Incident Angle | Land Cover Change | |
---|---|---|---|
Forest→Landslide | Residential area→Residential Area with Mud Induced by the Landslide | ||
α, γHH-VV | Low | Good | Not good. |
↓ | ↓ | ||
High | Moderate | ||
Entropy, σ°Surface, γ(HH+VV)-(HH−VV) | All | Moderate | |
σ°Double, σ°Volume, σ°Helix, σ°, Anisotropy | All | Not good |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, M.; Thapa, R.B.; Shimada, M. Pi-SAR-L2 Observation of the Landslide Caused by Typhoon Wipha on Izu Oshima Island. Remote Sens. 2016, 8, 282. https://doi.org/10.3390/rs8040282
Watanabe M, Thapa RB, Shimada M. Pi-SAR-L2 Observation of the Landslide Caused by Typhoon Wipha on Izu Oshima Island. Remote Sensing. 2016; 8(4):282. https://doi.org/10.3390/rs8040282
Chicago/Turabian StyleWatanabe, Manabu, Rajesh Bahadur Thapa, and Masanobu Shimada. 2016. "Pi-SAR-L2 Observation of the Landslide Caused by Typhoon Wipha on Izu Oshima Island" Remote Sensing 8, no. 4: 282. https://doi.org/10.3390/rs8040282