Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm
"> Figure 1
<p>The pictures depict examples of field reflectance spectra measured from different surface constituents in Eastern Yunnan, China.</p> "> Figure 2
<p>Comparison of relative reflectance with uncorrected offsets and averaged, absolute reflectance spectrum with offsets corrected.</p> "> Figure 3
<p>Definition of the continuum and continuum removal of absorption features [<a href="#B32-remotesensing-08-00068" class="html-bibr">32</a>,<a href="#B33-remotesensing-08-00068" class="html-bibr">33</a>,<a href="#B34-remotesensing-08-00068" class="html-bibr">34</a>,<a href="#B35-remotesensing-08-00068" class="html-bibr">35</a>,<a href="#B36-remotesensing-08-00068" class="html-bibr">36</a>,<a href="#B37-remotesensing-08-00068" class="html-bibr">37</a>]. The carbonate rock spectrum is the average of measured spectra.</p> "> Figure 4
<p>Reflectance spectra of surface constituents in karst rocky desertification areas and the parameters of HCRIs: <math display="inline"> <msub> <mi>λ</mi> <mn>0</mn> </msub> </math>, <math display="inline"> <msub> <mi>λ</mi> <mn>1</mn> </msub> </math> and <math display="inline"> <msub> <mi>λ</mi> <mn>2</mn> </msub> </math>.</p> "> Figure 5
<p>Reflectance spectra of the surface constituents in 2.0–2.5 μm: (<b>a</b>) exposed carbonate rocks; (<b>b</b>) soils; (<b>c</b>) green vegetation; and (<b>d</b>) NPV. The mean reflectance spectra are colored red.</p> "> Figure 6
<p>Continuum-removed spectra for absorption features in the spectra of: (<b>a</b>) selected surface constituents; (<b>b</b>) mixtures of the soil and carbonate rock; (<b>c</b>) mixtures of the green vegetation and carbonate rock; (<b>d</b>) mixtures of the NPV and carbonate rock.</p> "> Figure 7
<p>Linear regression results for 2.340 μm absorption features of the second synthetic karst surface mixtures and carbonate rock fraction: (<b>a</b>) feature KRDSI<math display="inline"> <msub> <mrow/> <mn>3</mn> </msub> </math>; (<b>b</b>) feature absorption area; (<b>c</b>) feature HCRI<math display="inline"> <msub> <mrow/> <mn>1</mn> </msub> </math>; (<b>d</b>) and feature HCRI<math display="inline"> <msub> <mrow/> <mn>2</mn> </msub> </math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Constituents in Karst Rocky Desertification Areas
2.2. Spectral Measurements of the Surface Constituents
2.3. Spectral Processing
2.4. Synthetic Mixed Spectra
Synthetic Spectra | Endmembers | Mixture Model | |||
---|---|---|---|---|---|
Rock | Soil | Vegetation | NPV | ||
Data set | Fixed | Fixed | Fixed | Fixed | Linear |
Data set | Fixed | Random | Random | Random | Linear |
Data set | Random | Random | Random | Random | Linear |
2.5. Spectral Analysis
2.5.1. Spectral Feature Analysis
2.5.2. Spectral Indices
Surface Constituent | Left Endpoint (μm) | Right Endpoint (μm) | Center (μm) | Depth | Area (nm) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Avg. | std. dev. | Avg. | std. dev. | Avg. | std. dev. | Avg. | std. dev. | Avg. | std. dev. | |
Carbonate rock | 2.1494 | 0.0359 | 2.3976 | 0.0012 | 2.3397 | 0.0008 | 0.3057 | 0.0718 | 26.6160 | 6.9708 |
Soil | 2.1333 | 0.0034 | 2.3043 | 0.0376 | 2.2030 | 0.0015 | 0.1586 | 0.0771 | 9.9981 | 5.2913 |
Green vegetation | 2.2382 | 0.0097 | 2.4431 | 0.0033 | 2.3523 | 0.0406 | 0.0851 | 0.0292 | 9.0048 | 4.1032 |
NPV | 2.1478 | 0.1098 | 2.3350 | 0.1046 | 2.2196 | 0.1229 | 0.0837 | 0.0157 | 6.1711 | 1.4092 |
Sample Identifiers | Left Endpoint (μm) | Right Endpoint (μm) | Center (μm) | Depth | Area (nm) | Asymmetry |
---|---|---|---|---|---|---|
#1 | 2.132 | 2.398 | 2.339 | 0.2316 | 20.1509 | 3.2252 |
#2 | 2.128 | 2.394 | 2.338 | 0.3173 | 26.8978 | 2.7564 |
#3 | 2.128 | 2.398 | 2.340 | 0.3924 | 35.3544 | 2.9720 |
#4 | 2.216 | 2.398 | 2.339 | 0.3246 | 27.4590 | 2.6701 |
#5 | 2.128 | 2.398 | 2.340 | 0.4316 | 38.6760 | 2.9305 |
#6 | 2.133 | 2.398 | 2.341 | 0.2398 | 20.1119 | 3.2333 |
#7 | 2.219 | 2.398 | 2.340 | 0.2512 | 20.3219 | 2.9047 |
#8 | 2.128 | 2.398 | 2.340 | 0.4055 | 36.4791 | 2.9427 |
#9 | 2.131 | 2.398 | 2.340 | 0.2816 | 24.5707 | 3.0008 |
#10 | 2.131 | 2.398 | 2.339 | 0.2331 | 21.0690 | 3.1257 |
#11 | 2.188 | 2.397 | 2.340 | 0.2411 | 19.4705 | 3.0124 |
#12 | 2.131 | 2.398 | 2.340 | 0.3186 | 28.8311 | 3.1955 |
2.6. Linear Regression with Carbonate Rock Fraction
3. Experimental Results
3.1. Spectra of Surface Constituents in Karst Rocky Desertification Areas in SWIR 2.0–2.5 μm
3.2. Continuum-Removed Spectra
3.3. Synthetic Mixed Spectra
3.4. Relativity between the Surface CarbonateRock Fractions and 2.340 μm Absorption Features
Feature | Data set | Data set | ||||
---|---|---|---|---|---|---|
r | RMSE | r | RMSE | |||
KRDSI | 0.9695 | 0.0706 | 9.6562 | 0.4830 | 0.2524 | 286.5752 |
KRDSI | 0.9839 | 0.0515 | 4.9257 | 0.5924 | 0.2322 | 242.6249 |
KRDSI | 0.9853 | 0.0492 | 4.5504 | 0.6379 | 0.2219 | 221.6684 |
KRDSI | 0.9750 | 0.0640 | 8.1982 | 0.7136 | 0.2019 | 183.4232 |
HCRI | 0.9943 | 0.0306 | 1.8762 | 0.7976 | 0.1740 | 54.4868 |
HCRI | 0.9988 | 0.0140 | 0.4126 | 0.7582 | 0.1881 | 63.6719 |
Center | 0.3891 | 0.2658 | 317.5832 | 0.2799 | 0.2772 | 345.4699 |
Depth | 0.9659 | 0.0746 | 11.1394 | 0.6883 | 0.2092 | 78.7987 |
Area | 0.9716 | 0.0682 | 7.5767 | 0.6413 | 0.2213 | 88.1608 |
Asymmetry | −0.0027 | 0.2984 | 373.9998 | -0.0043 | 0.2888 | 374.8217 |
4. Discussion
4.1. The Absorption Feature in the Four Major Surface Constituents Spectra
4.2. Estimating Carbonate Rock Fraction Using Synthetic Reflectance Spectra
4.3. Potential of Estimating Carbonate Rock Fraction Using Remote Sensing Imagery
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Beynen, P.E. Karst Management; Springer Science & Business Media: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Brinkmann, R.; Parise, M. Karst environments: Problems, management, human impacts, and sustainability an introduction to the special issue. J. Cave Karst Stud. 2012, 74, 135–136. [Google Scholar] [CrossRef]
- Yuan, D. Modern karstology and global change study. Earth Sci. Front. 1997, 4, 21–29, (In Chinese with English Abstract). [Google Scholar]
- Wang, S.; Liu, Q.; Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Li, J. Remote sensing analysis and prognosis of desertification in Du’An. Remote Sens. Land Resour. 2002, 14, 15–19, (In Chinese with English Abstract). [Google Scholar]
- Li, W.; Yu, D. A study of the technology for remote sensing investigation of rocky desertification in areas of karst stony hills. Remote Sens. Land Resour. 2002, 14, 34–37, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.; An, Y.; Zhou, X. CBERS-supported special information selection method in karst mountain-A case study in Duyun City, Guizhou. Carsologica Sinca 2006, 25, 313–319, (In Chinese with English Abstract). [Google Scholar]
- Huang, Q.; Cai, Y. Mapping Karst Rock in Southwest China. Mt. Res. Dev. 2009, 29, 14–20. [Google Scholar] [CrossRef]
- Qu, L.; Han, W.; Lin, H.; Zhu, Y.; Zhang, L. Estimating Vegetation Fraction Using Hyperspectral Pixel Unmixing Method: A Case Study of a Karst Area in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4559–4565. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, K.; Cen, Y.; Shuai, T.; Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 86–94. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Li, L.; Tong, L.; Li, X. The remote sensing karst rocky desertification extraction method based on vegetation coverage. Remote Sens. Land Resour. 2010, 22, 59–62, (In Chinese with English Abstract). [Google Scholar]
- Zhang, P.; Hu, Y.; Xiao, D.; Li, X.; Yin, J. A Method of the Percentage of Bare Rock Calculation in Karst Areas Based on Multi–spectrum Remote Sensing Image. Remote Sens. Tech. Appl. 2010, 20, 510–514, (In Chinese with English Abstract). [Google Scholar]
- Xia, X.; Tian, Q.; Du, F. Retrieval of rock-desertification degree from multi-spectral remote sensing images. J. Remote Sens. 2006, 10, 469–474, (In Chinese with English Abstract). [Google Scholar]
- Tong, L. A method for extracting remote sensing information from rocky desertification areas in southwest china. Remote Sens. Land Resour. 2003, 4, 35–38, (In Chinese with English Abstract). [Google Scholar]
- Xie, X.; Du, P.; Xia, J.; Luo, J. Spectral Indices for Estimating Exposed Carbonate Rock Fraction in Karst Areas of Southwest China. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1988–1992. [Google Scholar]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, B.; Wang, K.; Liu, B.; Li, R.; Jiao, Q.; Yang, Q.; Zhang, M. Spectral indices for estimating ecological indicators of karst rocky desertification. Int. J. Remote Sens. 2010, 31, 2115–2122. [Google Scholar] [CrossRef]
- Yue, Y.M.; Wang, K.L.; Liu, B.; Li, R.; Zhang, B.; Chen, H.S.; Zhang, M.Y. Development of new remote sensing methods for mapping green vegetation and exposed bedrock fractions within heterogeneous landscapes. Int. J. Remote Sens. 2013, 34, 5136–5153. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.W. Visible and near infrared spectra of minerals and rocks. II. Carbonates. Mod. Geol. 1971, 2, 23–30. [Google Scholar]
- Van der Meer, F. Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sens. Rev. 1995, 13, 67–94. [Google Scholar] [CrossRef]
- Gaffey, S.J. Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 μm): Applications in carbonate petrology. Geology 1985, 13, 270–273. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Crowley, J.K. Visible and near-infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities. J. Geophys. Res. 1986, 91, 5001–5012. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens. Environ. 2003, 84, 437–456. [Google Scholar] [CrossRef]
- Urich, P.B. Land Use in Karst Terrain: Review of Impacts of Primary Activities on Temperate Karst Ecosystems; Department of Conservation: Wellington, New Zealand, 2002.
- Kokaly, R.F.; Skidmore, A.K. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 1–29. [Google Scholar] [CrossRef]
- Settle, J.J.; Drake, N.A. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 1993, 14, 1159–1177. [Google Scholar] [CrossRef]
- Clark, R.; Roush, T. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Gorelick, N.S. Automatic continuum analysis of reflectance spectra. In Proceedings of the Third AIS workshop, Pasadena, CA, USA, 2–4 June 1987; pp. 138–142.
- Green, A.A.; Craig, M.D. Analysis of aircraft spectrometer data with logarithmic residuals. In Proceedings of the Third AIS workshop, Pasadena, CA, USA, 8–10 April 1985; pp. 111–129.
- Kruse, F.A.; Raines, G.L.; Watson, K. Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data. In Proceedings of the 4th International Symposium on Remote Sensing of Environment, Thematic Conference on Remote Sensing for Exploration Geology, San Francisco, CA, USA, 1–4 April 1985; pp. 309–324.
- Kruse, F.; Lefkoff, A.; Dietz, J. Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 309–336. [Google Scholar] [CrossRef]
- Kruse, F.; Lefkoff, A. Knowledge-based geologic mapping with imaging spectrometers. Remote Sens. Rev. 1994, 8, 3–28. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets 2003, 108, 5131–5146. [Google Scholar] [CrossRef]
- Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 55–68. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Kokaly, R.F. PRISM: Processing Routines in IDL for Spectroscopic Measurements (Installation Manual and User’s Guide, Version 1.0); Technical Report; US Geological Survey: Reston, VA, USA, 2011.
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Ninomiya, Y. A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 3, pp. 1552–1554.
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, ON, Canada, 2010; Volume 107, pp. 163–215. [Google Scholar]
- Johnson, P.E.; Smith, M.O.; Taylor-George, S.; Adams, J.B. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res. Solid Earth 1983, 88, 3557–3561. [Google Scholar] [CrossRef]
- Zaini, N.; van der Meer, F.; van der Werff, H. Determination of carbonate rock chemistry using laboratory-based hyperspectral imagery. Remote Sens. 2014, 6, 4149–4172. [Google Scholar] [CrossRef]
- Zaini, N.; van der Meer, F.; van der Werff, H. Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sens. 2012, 4, 987–1003. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Agroclimatology: Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Milton, E.J. Review Article Principles of field spectroscopy. Int. J. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Brest, C.L.; Goward, S.N. Deriving surface albedo measurements from narrow band satellite data. Int. J. Remote Sens. 1987, 8, 351–367. [Google Scholar] [CrossRef]
- Proy, C.; Tanre, D.; Deschamps, P. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Hu, B.; Lucht, W.; Li, X.; Strahler, A.H. Validation of kernel-driven semiempirical models for the surface bidirectional reflectance distribution function of land surfaces. Remote Sens. Environ. 1997, 62, 201–214. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Tian, S.; Du, P.; Zhan, W.; Samat, A.; Chen, J. Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm. Remote Sens. 2016, 8, 68. https://doi.org/10.3390/rs8010068
Xie X, Tian S, Du P, Zhan W, Samat A, Chen J. Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm. Remote Sensing. 2016; 8(1):68. https://doi.org/10.3390/rs8010068
Chicago/Turabian StyleXie, Xiangjian, Shufang Tian, Peijun Du, Wenfeng Zhan, Alim Samat, and Jike Chen. 2016. "Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm" Remote Sensing 8, no. 1: 68. https://doi.org/10.3390/rs8010068
APA StyleXie, X., Tian, S., Du, P., Zhan, W., Samat, A., & Chen, J. (2016). Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm. Remote Sensing, 8(1), 68. https://doi.org/10.3390/rs8010068