An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions
"> Figure 1
<p>Study area locations across the circumpolar Arctic.</p> "> Figure 2
<p>Diagram of processing flow for classification of Persistent Ice and Snow Cover (PISC) for a single pixel.</p> "> Figure 3
<p>Comparison of original CFmask and revised CFmask for Bylot Island Landsat scene acquired 12 August 1999. (<b>a</b>) Landsat surface reflectance 7-4-2 band combination; (<b>b</b>) original CFmask cloud cover classification; and (<b>c</b>) revised CFmask cloud cover classification.</p> "> Figure 4
<p>Agreement with the Randolph Glacier Inventory (RGI) glacier extent for each full study area and validation study area. (<b>a</b>) Brooks Range, USA; (<b>b</b>) Saltfjellet, Norway; (<b>c</b>) Bylot Island, Canada; (<b>d</b>) Jamesonland, Greenland; (<b>e</b>) Clavering Island, Greenland; (<b>f</b>) Trollaskagi Peninsula, Iceland; (<b>g</b>) Barnes Ice Cap, Canada; (<b>h</b>) Sarek NP, Sweden.</p> "> Figure 5
<p>Agreement with VHRI-derived glacier extent for each VHRI validation study area. (<b>a</b>) Severny Island, Russia; (<b>b</b>) Borden Peninsula, Canada; (<b>c</b>) Brooks Range, USA; (<b>d</b>) Pond Inlet, Canada.</p> "> Figure 6
<p>Agreement between mapped PISC and glaciers mapped with RGI for the Trollaskagi Peninsula, Iceland, with area of detail showing Landsat imagery and areas of false positives for PISC outlined in red.</p> "> Figure 7
<p>Cloud-free and shadow-free views for a subset of the Brooks Range study area using the original CFmask and the revised cloud masking approach. Examples of glacier margins where false cloud cover was consistently identified, resulting in <4 cloud-free and shadow-free surface views are highlighted in purple.</p> "> Figure 8
<p>Accuracy (agreement with the RGI) for each study area as a function of late summer snow cover days threshold using the original CFmask and the revised cloud masking approach. (<b>a</b>) Brooks Range, USA; (<b>b</b>) Saltfjellet, Norway; (<b>c</b>) Bylot Island, Canada; (<b>d</b>) Jamesonland, Greenland.</p> "> Figure 8 Cont.
<p>Accuracy (agreement with the RGI) for each study area as a function of late summer snow cover days threshold using the original CFmask and the revised cloud masking approach. (<b>a</b>) Brooks Range, USA; (<b>b</b>) Saltfjellet, Norway; (<b>c</b>) Bylot Island, Canada; (<b>d</b>) Jamesonland, Greenland.</p> "> Figure 9
<p>Effect of fraction of Days With Ice and Snow Cover (fDISC) threshold and Normalized Difference Snow Index (NDSI) threshold on PISC map accuracy (defined as agreement with RGI glacier area) for each RGI calibration study area. (<b>a</b>) Brooks Range, USA; (<b>b</b>) Saltfjellet, Norway; (<b>c</b>) Bylot Island, Canada; (<b>d</b>) Jamesonland, Greenland.</p> "> Figure 10
<p>Effect of number of cloud and shadow free views on precision (user’s accuracy for the ice covered class) and recall (producer’s accuracy for the ice-covered class) for RGI validation study areas and VHRI validation study areas. (<b>a</b>) Effect of the number cloud-free and shadow-free views on precision for the RGI validation study areas; (<b>b</b>) effect of the number of cloud-free and shadow-free views on precision for VHRI validation study areas; (<b>c</b>) effect of the number of cloud-free and shadow-free views on recall for the RGI validation study areas; and (<b>d</b>) effect of the number of cloud-free and shadow-free views on recall for VHRI validation study areas.</p> "> Figure 10 Cont.
<p>Effect of number of cloud and shadow free views on precision (user’s accuracy for the ice covered class) and recall (producer’s accuracy for the ice-covered class) for RGI validation study areas and VHRI validation study areas. (<b>a</b>) Effect of the number cloud-free and shadow-free views on precision for the RGI validation study areas; (<b>b</b>) effect of the number of cloud-free and shadow-free views on precision for VHRI validation study areas; (<b>c</b>) effect of the number of cloud-free and shadow-free views on recall for the RGI validation study areas; and (<b>d</b>) effect of the number of cloud-free and shadow-free views on recall for VHRI validation study areas.</p> ">
Abstract
:1. Introduction
2. Study Regions
Study Area | Country | Type | VHRI Sensor | Lat | Lon | Ice Cover | WRS-2 Path/Row |
---|---|---|---|---|---|---|---|
Brooks Range 1 | USA | RGI calibration | n/a | 69.3°N | 144.0°W | 11% | 68/11, 69/12, 70/11, 71/11, 72/11 |
Saltfjellet | Norway | RGI calibration | n/a | 66.7°N | 14.2°E | 26% | 197/13, 198/13, 199/13, 200/13 |
Bylot Island | Canada | RGI calibration | n/a | 73.4°N | 79.0°W | 66% | 30/8, 31/8, 32/8, 33/8, 34/8, 35/8 |
Jamesonland | Greenland | RGI calibration | n/a | 71.8°N | 25.0°W | 61% | 226/9, 226/10, 227/9, 228/9, 229/9, 230/9, 231/9 |
Clavering Island | Greenland | RGI validation | n/a | 74.3°N | 21.0°W | 20% | 227/8, 228/7, 228/8, 229/7, 230/7, 231/7 |
Barnes Ice Cap | Canada | RGI validation | n/a | 69.6°N | 72.0°W | 47% | 22/11, 23/11, 24/11, 25/11 |
Trollaskagi Peninsula | Iceland | RGI validation | n/a | 65.7°N | 18.8°W | 8% | 218/14, 219/14, 220/14 |
Sarek NP | Sweden | RGI validation | n/a | 67.3°N | 17.7°E | 10% | 196/13, 197/13, 198/13 |
Brooks Range 2 | USA | VHRI validation | WorldView 2 | 69.2°N | 144.8°W | 6% | 69/11, 70/11, 71/11, 72/11 |
Borden Peninsula | Canada | VHRI validation | WorldView 2 | 73.3°N | 82.7°W | 47% | 33/8, 34/8, 35/8, 36/8 |
Pond Inlet | Canada | VHRI validation | WorldView 3 | 72.3°N | 75.7°W | 83% | 27/9, 28/9, 29/9, 30/9 |
Sverny Island | Russia | VHRI validation | WorldView 2 | 74.3°N | 55.7°E | 34% | 177/8, 178/7, 178/8, 179/7, 180/7 |
3. Data
3.1. Landsat Data
3.2. Randolph Glacier Inventory Data
4. Methods
4.1. Cloud and Shadow Masking
4.2. Snow and Ice Mapping
4.3. Additional Processing Steps
4.4. Accuracy Assessment
5. Results
5.1. Overall Accuracy
5.2. Factors Affecting Persistent Ice and Snow Cover Map Accuracy
5.2.1. Use of Original CFmask vs. Revised Cloud Masking Approach
Study Area | Original CFmask | Revised Approach | ||
---|---|---|---|---|
Mean CFSFSV | Pixels with <5 CFSFSV | Mean CFSFSV | Pixels with <5 CFSFSV | |
Brooks Range | 15.0 | 11.0% | 20.8 | 1.2% |
Saltfjellet | 7.3 | 28.2% | 10.0 | 9.1% |
Bylot Island | 29.4 | 0.0% | 29.5 | 0.0% |
Jamesonland | 14.4 | 4.3% | 16.4 | 0.8% |
5.2.2. Normalized Difference Snow Index (NDSI) threshold
5.2.3. Fraction of Days with Ice and Snow Cover (fDISC) Threshold
5.2.4. Selection of Algorithm Threshold Values for NDSI fDISC
5.2.5. Number of Cloud-Free and Shadow-Free Land Surface Views
5.3. Spatial Distribution of Errors
6. Discussion
6.1. Effect of Fraction of Days with Ice/Snow Cover (fDISC) Threshold
6.2. Advantages and Disadvantages in Comparison to Traditional Semi-Automated Approaches
6.3. Importance of Revised Cloud Masking Approach
6.4. Application of the Approach to Lower Latitude Regions
6.5. Future Research
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in snow, ice and frozen ground. In Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.L., Jr., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Chapter 4; pp. 337–384. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Sessa, R.; Dolman, H. Terrestrial Essential Climate Variables for Climate Change Assessment, Mitigation and Adaptation (GTOS 52); Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 1989, 342, 637–642. [Google Scholar] [CrossRef]
- Meier, M.F.; Dyurgerov, M.B.; Rick, U.K.; O’Neel, S.; Pfeffer, W.T.; Anderson, R.S.; Anderson, S.P.; Glazovsky, A.F. Glaciers dominate eustatic sea-level rise in the 21st century. Science 2007, 317, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Manabe, S. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Clim. Dyn. 1987, 1, 87–99. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Reynolds, J.M.; Haeberli, W. Glacier and permafrost hazards in high mountains. In Global Change and Mountain Regions; Huber, U.M., Bugmann, H.K.M., Reasoner, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 225–234. [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol. 2009, 50, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W. Glaciers and ice caps: Historical background and strategies of worldwide monitoring. In Mass Balance of the Cryosphere; Bamber, J.L., Payne, A.J., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 559–578. [Google Scholar]
- Hall, D.; Chang, A.; Foster, J.; Benson, C.; Kovalick, W. Comparison of in situ and Landsat derived reflectance of Alaskan glaciers. Remote Sens. Environ. 1989, 28, 23–31. [Google Scholar] [CrossRef]
- Hall, D.; Ormsby, J.; Bindschadler, R.; Siddalingaiah, H. Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Ann. Glaciol. 1987, 9, 104–108. [Google Scholar]
- Ventura, A.D.; Rampini, A.; Rabagliati, R.; Barbero, R.S. Development of a satellite remote sensing technique for the study of alpine glaciers. Int. J. Remote Sens. 1987, 8, 203–215. [Google Scholar] [CrossRef]
- Williams, R.S., Jr.; Hall, D.K.; Benson, C.S. Analysis of glacier facies using satellite techniques. J. Glaciol. 1991, 37, 120–128. [Google Scholar]
- Winther, J.G. Landsat TM derived and in situ summer reflectance of glaciers in Svalbard. Polar Res. 1993, 12, 37–55. [Google Scholar] [CrossRef]
- Rundquist, D.; Collins, S.; Barnes, R.; Bussom, D.; Samson, S.; Peake, J. The use of Landsat digital information for assessing glacier inventory parameters. Int. Assoc. Hydrol. Sci. 1980, 126, 321–331. [Google Scholar]
- Hall, D.K.; Benson, C.S.; Field, W.O. Changes of glaciers in Glacier Bay, Alaska, using ground and satellite measurements. Phys. Geogr. 1995, 16, 27–41. [Google Scholar]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Jacobs, J.D.; Simms, É.L.; Simms, A. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. J. Glaciol. 1997, 43, 98–102. [Google Scholar]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Cogley, J.G. A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann. Glaciol. 2013, 54, 191–199. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; le Bris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Bishop, M.P.; Olsenholler, J.A.; Shroder, J.F.; Barry, R.G.; Raup, B.H.; Bush, A.B.G.; Copland, L.; Dwyer, J.L.; Fountain, A.G.; Haeberli, W.; et al. Global land ice measurements from space (GLIMS): Remote sensing and GIS investigations of the earth’s cryosphere. Geocarto Int. 2004, 19, 57–84. [Google Scholar] [CrossRef]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Arvidson, T.; Gasch, J.; Goward, S.N. Landsat 7’s long-term acquisition plan—An innovative approach to building a global imagery archive. Remote Sens. Environ. 2001, 78, 13–26. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Irish, R.R. Landsat 7 Science Data Users Handbook; National Aeronautics and Space Administration: Washington, DC, USA, 2000.
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D.K.; Salomonson, V.V. A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In Proceedings of the IEEE International Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Geoscience and Remote Sensing Symposium (IGARSS ’94), Pasadena, CA, USA, 8–12 August 1994; pp. 1942–1944.
- ITT Visual Information Solutions. ENVI User’s Guide. ENVI on-Line Software User’s Manual; ITT Visual Information Solutions: Boulder, CO, USA, 2008. [Google Scholar]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Painter, T.H.; Brodzik, M.J.; Racoviteanu, A.; Armstrong, R. Automated mapping of earth’s annual minimum exposed snow and ice with MODIS. Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Kunert, A.; Kamp, U. Automated delineation of debris-covered glaciers based on ASTER data. In Proceedings of the 27th EARSeL Symposium, Geoinformation in Europe, Bolzano, Italy, 4–7 June 2007; pp. 4–6.
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Shukla, A.; Arora, M.; Gupta, R. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selkowitz, D.J.; Forster, R.R. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions. Remote Sens. 2016, 8, 16. https://doi.org/10.3390/rs8010016
Selkowitz DJ, Forster RR. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions. Remote Sensing. 2016; 8(1):16. https://doi.org/10.3390/rs8010016
Chicago/Turabian StyleSelkowitz, David J., and Richard R. Forster. 2016. "An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions" Remote Sensing 8, no. 1: 16. https://doi.org/10.3390/rs8010016
APA StyleSelkowitz, D. J., & Forster, R. R. (2016). An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions. Remote Sensing, 8(1), 16. https://doi.org/10.3390/rs8010016