Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems
"> Figure 1
<p>The 68 eddy covariance (EC) flux tower sites used in this study. GRA: grassland; SAW: savanna; SHR: shrubland. The base map is Ecoregion map provided by The Nature Conservancy [<a href="#B54-remotesensing-07-15853" class="html-bibr">54</a>].</p> "> Figure 2
<p>Comparison of statistical indicators including latent heat flux (LE) values, Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R<sup>2</sup>) and root mean squared error (RMSE) by daily LE observations and simulations of five LE algorithms at 68 EC sites for GRA (grassland), SAW (savanna), SHR (shrubland) during the period 2000–2009.</p> "> Figure 3
<p>LE observed at the EC sites and predicted by the MOD16, RRS, PT, MS-PT and UMD algorithms during the period 2000–2009.</p> "> Figure 4
<p>Observed and estimated LE at EC sites driven by MERRA meteorological data during the period 2000–2009.</p> "> Figure 5
<p>Measured and estimated time series for the 8 day LE average during the period 2000–2007. The GRA sites include US-FPe and US-Goo. The SAW sites include US-Ton and AU-How. The SHR sites include CA-NS6 and CA-NS7. Locations include FPe*—(Fort Peck); Goo*—Goodwin Creek; Ton*—Tonzi Ranch; How*—Howard Springs; NS6*—UCI 1989; NS7*—UCI 1998. US*—United States; CA*—Canada; AU*—Australia.</p> "> Figure 6
<p>Sensitivity analysis for estimated LE by the (<b>a</b>) MOD16; (<b>b</b>) MS-PT; (<b>c</b>) PT-JPL; (<b>d</b>) RRS and (<b>e</b>) UMD algorithms with corresponding input variables. The black line is 1:1 line.</p> "> Figure 7
<p>Spatial distribution of the correlation coefficients, RMSE and Bias for estimated daily LE calculated by MOD16, RRS, PT-JPL, MS-PT, and UMD over the period 2000–2009.</p> "> Figure 8
<p>Estimated annual global terrestrial LE for grassland, savanna and shrubland averaged for 2003–2006 at spatial resolution of 0.05° from algorithms driven by GMAO-GERRA meteorology.</p> "> Figure 9
<p>Estimated annual global terrestrial LE biases for three biomes (grassland, savanna, and shrubland) averaged for 2003–2006 at spatial resolution of 0.05° from the algorithms driven by GMAO-GERRA meteorology. Bias was computed as the difference of the models.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Data at EC Sites
Site Name | Country | Biome | Lat | Lon | Available Years |
---|---|---|---|---|---|
AT-Neu | Austria | GRA | 47.12 | 11.32 | 2002–2015 |
CA-Let | Canada | GRA | 49.71 | −112.94 | 1998–2015 |
CH-Oe1 | Switzerland | GRA | 47.29 | 7.73 | 2002–2008 |
CN-Du2 | China | GRA | 42.05 | 116.28 | 2005–2015 |
CZ-BK2 | China | GRA | 49.49 | 18.54 | 2004–2012 |
DE-Gri | Germany | GRA | 50.95 | 13.51 | 2004–2013 |
DE-Meh | Germany | GRA | 51.28 | 10.66 | 2003–2006 |
DK-Lva | Denmark | GRA | 55.68 | 12.08 | 2004–2008 |
DS | China | GRA | 44.09 | 113.57 | |
ES-VDA | Spain | GRA | 42.15 | 1.45 | 2002–2008 |
FI-Sii | Finland | GRA | 61.83 | 24.19 | 2004–2012 |
FK | China | GRA | 44.28 | 87.92 | |
FR-Lq1 | France | GRA | 45.64 | 2.74 | 2002–2015 |
FR-Lq2 | France | GRA | 45.64 | 2.74 | 2002–2015 |
HU-Bug | Hungary | GRA | 46.69 | 19.60 | 2002–2008 |
HU-Mat | Hungary | GRA | 47.85 | 19.73 | 2004–2008 |
IE-Dri | Ireland | GRA | 51.99 | −8.75 | 2002–2013 |
IT-Amp | Italy | GRA | 41.90 | 13.61 | 2002–2008 |
IT-Be2 | Italy | GRA | 46.00 | 13.03 | 2006–2012 |
IT-MBo | Italy | GRA | 46.01 | 11.05 | 2002–2015 |
IT-Mal | Italy | GRA | 46.11 | 11.70 | 2002–2007 |
KBU | Mongolia | GRA | 47.21 | 108.74 | |
NL-Ca1 | Netherlands | GRA | 51.97 | 4.93 | 2000–2015 |
NM | China | GRA | 42.93 | 120.70 | |
PT-Mi2 | Portugal | GRA | 38.48 | −8.02 | 2004–2008 |
RU-Ha1 | Russia | GRA | 54.73 | 90.00 | 2002–2004 |
RU-Ha2 | Russia | GRA | 54.77 | 89.96 | 2002–2003 |
RU-Ha3 | Russia | GRA | 54.70 | 89.08 | 2004–2004 |
UK-EBu | United Kingdom | GRA | 55.87 | −3.21 | 2004–2012 |
UK-Tad | United Kingdom | GRA | 51.21 | −2.83 | 2000–2001 |
US-ARb | United States | GRA | 35.55 | −98.04 | 2005–2006 |
US-ARc | United States | GRA | 35.55 | −98.04 | 2005–2006 |
US-Aud | United States | GRA | 31.59 | −110.51 | 2002–2015 |
US-Dk1 | United States | GRA | 35.97 | −79.09 | 2001–2015 |
US-FPe | United States | GRA | 48.31 | −105.10 | 1999–2015 |
US-Fwf | United States | GRA | 35.45 | −111.77 | 2005–2015 |
US-Goo | United States | GRA | 34.25 | −89.87 | 2002–2007 |
US-Var | United States | GRA | 38.41 | −120.95 | 2000–2015 |
US-Wkg | United States | GRA | 31.74 | −109.94 | 2003–2015 |
Xfs | China | GRA | 44.13 | 116.33 | 2004–2006 |
Xi2 | China | GRA | 43.55 | 116.67 | 2006–2006 |
YZ | China | GRA | 35.95 | 104.13 | 2008–2009 |
ZY | China | GRA | 39.09 | 100.30 | |
AU-How | Australia | SAW | −12.50 | 131.15 | 2001–2015 |
BW-Ghm | Botswana | SAW | −21.20 | 21.75 | 2003–2012 |
BW-Ma1 | Botswana | SAW | −19.92 | 23.56 | 1999–2001 |
ES-LMa | Spain | SAW | 39.94 | −5.77 | 2004–2012 |
PR | SAW | 38.09 | −122.96 | ||
US-FR2 | United States | SAW | 29.95 | −98.00 | 2004–2015 |
US-SRM | United States | SAW | 31.82 | −110.87 | 2004–2015 |
US-Ton | United States | SAW | 38.43 | −120.97 | 2001–2015 |
ZA-Kru | South Africa | SAW | −25.02 | 31.50 | 2000–2013 |
CA-NS6 | Canada | SHR | 55.92 | −98.96 | 2000–2006 |
CA-NS7 | Canada | SHR | 56.64 | −99.95 | 1999–2006 |
CA-SF3 | Canada | SHR | 54.09 | −106.01 | 2002–2006 |
CG-Tch | Kinshasa | SHR | −4.29 | 11.66 | 2006–2009 |
CN-Ku2 | China | SHR | 40.38 | 108.55 | 2005–2015 |
ES-LJu | Spain | SHR | 36.93 | −2.75 | 2004–2013 |
IT-Pia | Italy | SHR | 42.58 | 10.08 | 2002–2006 |
NI | Niger | SHR | 13.48 | 2.18 | |
RU-Cok | Russia | SHR | 70.62 | 147.88 | 2003–2013 |
SP | China | SHR | 37.53 | 105.80 | |
US-Bn3 | United States | SHR | 63.92 | −145.74 | 2003–2015 |
US-Los | United States | SHR | 46.08 | −89.98 | 2000–2015 |
US-SO2 | United States | SHR | 33.37 | −116.62 | 1993–2015 |
US-SO3 | United States | SHR | 33.38 | −116.62 | 1993–2015 |
US-SO4 | United States | SHR | 33.38 | −116.64 | 2004–2015 |
US-Wi6 | United States | SHR | 46.62 | −91.30 | 2002–2003 |
2.2. Data at Regional Scale
3. Methods
3.1. LE Algorithms
3.1.1. MODIS Algorithm (MOD16)
3.1.2. Revised Remote Sensing-Based Penman–Monteith LE Algorithm (RRS)
3.1.3. Priestley–Taylor Algorithm (PT-JPL)
3.1.4. Modified Satellite-Based Priestley–Taylor Algorithm (MS-PT)
3.1.5. Semi-Empirical Algorithm of the University of Maryland (UMD)
3.2. Data Analysis
4. Results
4.1. Validation
4.2. Spatial Distribution of LE
5. Discussion
5.1. Performance of the LE Algorithms
5.2. Spatial Differences of Five LE Algorithms
5.3. Limitations of LE Estimation Based on Five LE Algorithms
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knapp, A.K. Effect of fire and drought on the ecophysiology of andropogon gerardii and panicum virgatum in a tallgrass prairie. Ecology 1985, 66, 1309–1320. [Google Scholar] [CrossRef]
- Verma, S.B.; Kim, J.; Clement, R.J. Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie. Bound-Lay Meteorol. 1989, 46, 53–67. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Kimball, B.A.; Pinter, P.J.; Wall, G.W.; Lamorte, R.L.; Adamsen, F.J.; Leavitt, S.W.; Thompson, T.L.; Matthias, A.D.; Brooks, T.J. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agr. Forest Meteorol. 2000, 104, 85–105. [Google Scholar] [CrossRef]
- Peichl, M.; Carton, O.; Kiely, G. Management and climate effects on carbon dioxide and energy exchanges in a maritime grassland. Agr. Ecosyst. Environ. 2012, 158, 132–146. [Google Scholar] [CrossRef]
- Brunsell, N.A.; Nippert, J.B.; Buck, T.L. Impacts of seasonality and surface heterogeneity on water-use efficiency in mesic grasslands. Ecohydrology 2014, 7, 1223–1233. [Google Scholar] [CrossRef]
- Sun, G.; Caldwell, P.; Noormets, A.; McNulty, S.G.; Cohen, E.; Myers, J.M.; Domec, J.C.; Treasure, E.; Mu, Q.Z.; Xiao, J.F.; et al. Upscaling key ecosystem functions across the conterminous united states by a water-centric ecosystem model. J. Geophys. Res-Biogeo. 2011, 116. [Google Scholar] [CrossRef]
- Sun, G.; Alstad, K.; Chen, J.Q.; Chen, S.P.; Ford, C.R.; Lin, G.H.; Liu, C.F.; Lu, N.; McNulty, S.G.; Miao, H.X.; et al. A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 2011, 4, 245–255. [Google Scholar] [CrossRef]
- Krishnan, P.; Meyers, T.P.; Scott, R.L.; Kennedy, L.; Heuer, M. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in north america. Agr. Forest Meteorol. 2012, 153, 31–44. [Google Scholar] [CrossRef]
- Burke, I.C.; Kittel, T.G.F.; Lauenroth, W.K.; Snook, P.; Yonker, C.M.; Parton, W.J. Regional analysis of the central great plains, sensitivity to climate variability. Bioscience 1991, 41, 685–692. [Google Scholar] [CrossRef]
- Alan, K.K.; Philip, A.F.; John, M.B.; Scott, L.C.; Melinda, D.S.; Jonathan, D.C.; Christopher, W.H.; Brett, T.D.; Michelle, S.L.; James, K.M. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar]
- Gill, R.A.; H Wayne, P.; Johnson, H.B.; Anderson, L.J.; Hafiz, M.; Jackson, R.B. Nonlinear grassland responses to past and future atmospheric CO2. Nature 2002, 417, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.; Pataki, D.E.; Körner, C.; Clark, H.; Del Grosso, S.J.; Grünzweig, J.M.; Knapp, A.K.; Mosier, A.R.; Newton, P.C.D.; Niklaus, P.A.; et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 2004, 140, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Soussana, J.F.; Lüscher, A.; Lloveras, J.; González-Rodríguez, A.; Vázquez-Ya09ez, O.; Pi09eiro, J.; Santamaría, O.; Olea, L.; Poblaciones, M.J. Temperate grasslands and global atmospheric change. In Temperate grasslands and global atmospheric change, Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6 April 2006.
- Polley, H.W.; Johnson, H.B.; Fay, P.A.; Sanabria, J. Initial response of evapotranspiration from tallgrass prairie vegetation to CO2 at subambient to elevated concentrations. Funct. Ecol. 2008, 22, 163–171. [Google Scholar]
- Brunsell, N.A.; Jones, A.R.; Jackson, T.L.; Feddema, J.J. Seasonal trends in air temperature and precipitation in IPCC AR4 GCM output for Kansas, USA: Evaluation and implications. Int. J. Climatol. 2010, 30, 1178–1193. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Wang, K.; Wang, P.; Li, Z.; Cribb, M.; Sparrow, M. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos. 2007, 112, 229–238. [Google Scholar] [CrossRef]
- Martin, J.; Markus, R.; Philippe, C.; Seneviratne, S.I.; Justin, S.; Goulden, M.L.; Gordon, B.; Alessandro, C.; Jiquan, C.; Richard, D.J. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z. Evaluation of global observations-based evapotranspiration datasets and ipcc ar4 simulations. Geophys. Res. Lett. 2011, 38, 422–433. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agr. Forest Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- KUSTAS, W.P.; NORMAN, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote. Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Monteith, J.L.; Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotrans piration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Goulden, M.L. Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sens. Environ. 2011, 115, 2302–2319. [Google Scholar] [CrossRef]
- Yao, Y.J.; Liang, S.L.; Cheng, J.; Liu, S.M.; Fisher, J.B.; Zhang, X.D.; Jia, K.; Zhao, X.; Qing, Q.M.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified priestley-taylor algorithm. Agr. Forest Meteorol. 2013, 171, 187–202. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S.L. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Pipunic, R.C.; Walker, J.P.; Western, A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sens. Environ. 2008, 112, 1295–1305. [Google Scholar] [CrossRef]
- Xu, T.R.; Liang, S.L.; Liu, S.M. Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble kalman filter. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Xu, T.; Liu, S.; Liang, S.; Qin, J. Improving predictions of water and heat fluxes by assimilating MODIS land surface temperature products into the common land model. J. Hydrometeorol. 2011, 12, 227–244. [Google Scholar] [CrossRef]
- Shi, T.; Guan, D.; Wang, A.; Wu, J.; Jin, C.; Han, S. Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrol. Process. 2008, 22, 3431–3443. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; Li, X.; Liu, S.; Ma, Z.; Miyata, A. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014, 140, 279–293. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Richardson, A.D. Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol. 2005, 25, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Hollinger, D.Y.; Burba, G.G.; Davis, K.J.; Flanagan, L.B.; Katul, G.G.; Munger, J.W.; Ricciuto, D.M.; Stoy, P.C.; Suyker, A.E. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agr. Forest Meteorol. 2006, 136, 1–18. [Google Scholar] [CrossRef]
- Jenkins, J.P.; Richardson, A.D.; Braswell, B.H.; Ollinger, S.V.; Hollinger, D.Y.; Smith, M.L. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agr. Forest Meteorol. 2007, 143, 64–79. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at fluxnet sites. Agr. Forest Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agr. Forest Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Li, X.; Zhang, K.; Li, C.; Ning, N. Modelling evapotranspiration in an alpine grassland ecosystem on qinghai-tibetan plateau. Hydrol. Process. 2014, 28, 610–619. [Google Scholar] [CrossRef]
- Nichols, J.; Eichinger, W.; Cooper, D.I.; Prueger, J.H.; Hipps, L.E.; Neale, C.M.U.; Bawazir, A.S. Comparison of Evaporation Estimation Methods for a Riparian Area; College of Engineering, University of Iowa: Iowa City, IA, USA, 2004. [Google Scholar]
- Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 2011, 116, 3–25. [Google Scholar]
- Ershadi, A.; Mccabe, M.F.; Evans, J.P.; Chaney, N.W.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using fluxnet data. Agr. Forest Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Lecina, S.; MartNez-Cob, A.; Pérez, P.J.; Villalobos, F.J.; Baselga, J.J. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the penman-monteith equation under semiarid conditions. Agr. Water Manag. 2003, 60, 181–198. [Google Scholar] [CrossRef]
- Steduto, P.; Todorovic, M.; Caliandro, A.; Rubino, P. Daily reference evapotranspiration estimates by the penman-monteith equation in Southern Italy. Constant vs. Variable canopy resistance. Theor. Appl. Climatol. 2003, 74, 217–225. [Google Scholar] [CrossRef]
- Gindl, M.; Sinn, G.; Gindl, W.; Reiterer, A.; Tschegg, S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf. A Physicochem. Eng. Aspects 2001, 181, 279–287. [Google Scholar] [CrossRef]
- Katerji, N.; Rana, G.; Fahed, S. Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: Critical evaluation for irrigated crops in the mediterranean. Hydrol. Process. 2011, 25, 117–129. [Google Scholar] [CrossRef]
- Jiménez, C.; Prigent, C.; Aires, F. Toward an estimation of global land surface heat fluxes from multisatellite observations. J. Geophys. Res. Atmos. 2009, 114, 609–617. [Google Scholar] [CrossRef]
- The Fluxdata.Org Web Site. Available online: Http://www.Fluxdata.Org (accessed on 10 August 2015).
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Dolman, H.; Field, C.; Grelle, A.; Ibrom, A. Energy balance closure at fluxnet sites. Agr. Forest Meteorol. 2002, 113, 223–243. [Google Scholar]
- Conservation Maps and GIS Data. Available online: Http://maps.Tnc.Org/gis_data.Html (accessed on 10 August 2015).
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, J.J.; Clement, R.; Malhi, Y.; Leuning, R.; Cleugh, H.A. A re-evaluation of long-term flux measurement techniques part I: Averaging and coordinate rotation. Bound-Layer Meteorol. 2003, 107, 1–48. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Letzel, M.O.; Raasch, S.; Watanabe, T. LES study of the energy imbalance problem with eddy covariance fluxes. Bound-Layer Meteorol. 2004, 110, 381–404. [Google Scholar] [CrossRef]
- Oncley, S.P.; Foken, T.; Vogt, R.; Kohsiek, W.; Debruin, H.A.R.; Bernhofer, C.; Christen, A.; Gorsel, E.V.; Grantz, D.; Feigenwinter, C. The energy balance experiment ebex-2000. Part I: Overview and energy balance. Bound-Layer Meteorol. 2007, 123, 1–28. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, FAPAR and the relation between FAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Leaf area index. SpringerBriefs Earth Sci. 2014, 9, 259–274. [Google Scholar]
- Atmosphere Archive and Distribution System (LAADS) Data Archive. Available online: Ftp://ladsftp.Nascom.Nasa.Gov/alldata/ (accessed on 10 August 2015).
- Generation and Applications of Global Products of Essential Land Variables. Available online: Http://glass-product.Bnu.Edu.Cn/ (accessed on 10 August 2015).
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Srtm Global Digital Elevation Model Data Version2_1 Archive. Available online: Http://dds.Cr.Usgs.Gov/srtm/version2_1/srtm30//srtm30 (accessed on 10 August 2015).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Chen, J.; Bosilovich, M.G. A preliminary study of global water and energy cycles in a nasa reanalysis system. In Proceedings of the 20th Conference on Climate Variability and Change, New Orleans, LA, USA, 20–24 January 2008.
- Kennedy, A.D.; Dong, X.; Xi, B.; Xie, S.; Zhang, Y.; Chen, J. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Clim. 2011, 24, 4541–4557. [Google Scholar] [CrossRef]
- Goddard Earth Science Data Information Services center. Available online: Http://disc.Sci.Gsfc.Nasa.Gov/ (accessed on 10 August 2015).
- Cleugh, H.A.; Leuning, R.; Mu, Q.Z.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A Math. Phys. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Skidmore, E.L.; Jacobs, H.S.; Powers, W.L. Potential evapotranspiration as influenced by wind. Agrono. J. 1969, 61, 543–546. [Google Scholar] [CrossRef]
- Mcvicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Niel, T.G.V.; Thomas, A.; Grieser, R.; Jhajharia, D.; Himri, Y.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Qin, Q.; Wang, K.; Zhao, S. Satellite detection of increases in global land surface evapotranspiration during 1984–2007. Int. J. Digit. Earth 2012, 5, 299–318. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Zhao, S.; Zhang, Y.; Qin, Q.; Cheng, J.; Jia, K.; Xie, X.; Zhang, N.; Liu, M. Validation and application of the modified satellite-based priestley-taylor algorithm for mapping? Terrestrial evapotranspiration. Remote Sens. 2014, 6, 880–904. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, 93–102. [Google Scholar] [CrossRef]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Comparison of latent heat flux using aerodynamic methods and using the penman–monteith method with satellite-based surface energy balance. Remote Sens. 2014, 6, 8844–8877. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S.L. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Liu, S. Correcting surface solar radiation of two data assimilation systems against fluxnet observations in North America. J. Geophys. Res. Atmos. 2013, 118, 9552–9564. [Google Scholar] [CrossRef]
- Zib, B.; Dong, X.; Xi, B.; Kennedy, A. Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the arctic using BSRN surface observations. J. Clim. 2012, 25, 2291–2305. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117, 214–221. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7–11 July 2008; pp. III-875–III-878.
- Kustas, W.P.; Li, F.; Jackson, T.J.; Prueger, J.H.; Macpherson, J.I.; Wolde, M. Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in iowa. Remote Sens. Environ. 2004, 92, 535–547. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Chen, J.; Li, X.; Yao, Y.; Liang, S.; Liu, M.; Zhang, N.; Guo, Y.; Yu, J.; Sun, M. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems. Remote Sens. 2015, 7, 16733-16755. https://doi.org/10.3390/rs71215853
Feng F, Chen J, Li X, Yao Y, Liang S, Liu M, Zhang N, Guo Y, Yu J, Sun M. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems. Remote Sensing. 2015; 7(12):16733-16755. https://doi.org/10.3390/rs71215853
Chicago/Turabian StyleFeng, Fei, Jiquan Chen, Xianglan Li, Yunjun Yao, Shunlin Liang, Meng Liu, Nannan Zhang, Yang Guo, Jian Yu, and Minmin Sun. 2015. "Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems" Remote Sensing 7, no. 12: 16733-16755. https://doi.org/10.3390/rs71215853
APA StyleFeng, F., Chen, J., Li, X., Yao, Y., Liang, S., Liu, M., Zhang, N., Guo, Y., Yu, J., & Sun, M. (2015). Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems. Remote Sensing, 7(12), 16733-16755. https://doi.org/10.3390/rs71215853