Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland
"> Figure 1
<p>Areas and sites under investigation in Spain (REMEDHUS soil moisture network), Ireland (soil moisture network from AEON project) and Finland (FMI and GTK soil moisture network).</p> "> Figure 2
<p>Time series of <span class="html-italic">in situ</span> (continuous black line), ASAR (descending (blue triangle) and ascending (green triangle) passes), and ECV (red square) soil moisture values for each Spanish ECV cell.</p> "> Figure 3
<p>Time series of <span class="html-italic">in situ</span> (continuous black line), ASAR (descending (blue triangle) and ascending (green triangle) passes), and ECV (red square) soil moisture values for each Irish ECV cell.</p> "> Figure 4
<p>Time series of <span class="html-italic">in situ</span> (continuous black line), ASAR (descending (blue triangle) and ascending (green triangle) passes), and ECV (red square) soil moisture values for each Finnish ECV cell.</p> "> Figure 5
<p>Coefficient of variation (CV) of the ASAR SM mean, evaluated for each ASAR acquisition over the Spanish ECV-sized pixels, during the observation period 2005–2010. Seasonal-based values are highlighted by different colors. (Winter: DJF; Spring: MAM; Summer: JJA; Autumn: SON).</p> "> Figure 6
<p>(<b>a</b>) ASAR SM <span class="html-italic">vs.</span> ECV SM and (<b>b</b>) ASAR SM <span class="html-italic">vs. in Situ</span> SM correlation maps evaluated for each ASAR WS pixel (1 km × 1 km after resampling). The soil moisture ground measurements in ECV-B and ECV-D are provided by a single instrument installed in each of the ECV cell areas. For the analysis in ECV-A and ECV-C, where multiple soil moisture stations are located, the daily mean values of soil moisture recorded by each instrument within a single ECV cell has been considered.</p> "> Figure 7
<p>(<b>a</b>) ASAR SM <span class="html-italic">vs.</span> ECV and (<b>b</b>) ASAR SM <span class="html-italic">vs. in situ</span> SM correlation maps evaluated for each ASAR WS pixel (1 km × 1 km after resampling).</p> "> Figure 8
<p>Coefficient of variation (CV) of the ASAR SM mean, evaluated for each ASAR acquisition over the FMI and GTK ECV sized pixels, during the observation period 2007–2009 for Sodankylä, Ilomantsi and Kuusamo, 2007–2010 for Pori, and 2005–2009 for Suomussalmi. Seasonal based values are highlighted by different colors. (Spring: MAM; Summer: JJA; Autumn: SON).</p> "> Figure 8 Cont.
<p>Coefficient of variation (CV) of the ASAR SM mean, evaluated for each ASAR acquisition over the FMI and GTK ECV sized pixels, during the observation period 2007–2009 for Sodankylä, Ilomantsi and Kuusamo, 2007–2010 for Pori, and 2005–2009 for Suomussalmi. Seasonal based values are highlighted by different colors. (Spring: MAM; Summer: JJA; Autumn: SON).</p> "> Figure 9
<p>(<b>a</b>) ASAR SM <span class="html-italic">vs.</span> ECV SM and (<b>b</b>) ASAR SM <span class="html-italic">vs. in situ</span> SM correlation maps evaluated for each ASAR WS pixel (1 km × 1 km after resampling) within the Sodankylä (FMI) ECV size cell.</p> "> Figure 10
<p>(<b>a</b>) ASAR SM <span class="html-italic">vs.</span> ECV SM and (<b>b</b>) ASAR SM <span class="html-italic">vs. in situ</span> SM correlation maps evaluated for each ASAR WS pixel (1 km × 1 km after resampling) within the GTK ECV size cells.</p> ">
Abstract
:1. Introduction
2. Test Sites Description
3. Material and Methods
3.1. In Situ SM Data
3.1.1. REMEDHUS Network
ECV Cell | Site | SMS | Lat. | Lon. | Land Cover |
---|---|---|---|---|---|
ECV-A Porosity: 0.51 m3·m−3 | Carretoro | K10 | 41°16′N | −5°22′E | Non irrigated arable land |
Casa Periles | M05 | 41°24′N | −5°19′E | Agriculture/natural vegetation areas | |
El Coto | I06 | 41°22′N | −5°25′E | Non irrigated arable land | |
Granja G | K09 | 41°18′N | −5°21′E | Non irrigated arable land | |
Granja Toresana | I03 | 41°28′N | −5°27′E | Non irrigated arable land | |
Guarrati | H09 | 41°17′N | −5°25′E | Non irrigated arable land | |
Las Brozas | L03 | 41°27′N | −5°21′E | Agriculture/natural vegetation areas | |
La Cruz de Elias | M09 | 41°17′N | −5°18′E | Non irrigated arable land | |
Las Victorias | K04 | 41°25′N | −5°22′E | Non irrigated arable land | |
Llanos de la Boveda | L07 | 41°21′N | −5°19′E | Agriculture/natural vegetation areas | |
Paredinas | J03 | 41°27′N | −5°24′E | Vineyards | |
ECV-B Porosity: 0.31 m3·m−3 | Las Arenas | F06 | 41°22′N | −5°33′E | Non irrigated arable land |
ECV-C Porosity: 0.47 m3·m−3 | Casa Gorrizo | H11 | 41°14′N | −5°28′E | Non irrigated arable land |
La Atalaya | J14 | 41°9′N | −5°24′E | Non irrigated arable land | |
Las Bodega | H13 | 41°10′N | −5°28′E | Coniferous forest | |
ECV-D Porosity: 0.37 m3·m−3 | Zamarron | F11 | 41°14′N | −5°32′E | Non irrigated arable land |
3.1.2. Irish Network
Site | Porosity (m3·m−3) | Lat. | Lon. | Land Cover |
---|---|---|---|---|
Kilworth | 0.59 | 52°10′N | −8°14′E | Pastures |
Pallaskenry | 0.61 | 52°39′N | −8°51′E | Pastures |
Solohead | 0.63 | 52°30′N | −8°12′E | Pastures |
3.1.3. FMI Network
SM Network | Site | Lat. | Lon. | Land Cover |
---|---|---|---|---|
FMI Porosity: 0.55 m3·m−3 | Sodankylä | 67°21′N | 26°37′E | Shrub |
GTK Porosity: 0.47 m3·m−3 | Ilomantsi | 62°46′N | 30°58′E | Agricultural area |
Kuusamo | 66°19′N | 29°24′E | Shrub | |
Suomussalmi | 64°55′N | 28°45′E | Mixed forest | |
Pori | 61°30′N | 21°48′E | Non irrigated arable soil |
3.1.4. GTK Network
3.2. Remotely Sensed Data
3.2.1. ECV SM Product
3.2.2. ENVISAT ASAR WS SM Data
3.3. Regional Scale Analysis of SM Temporal Variability
Region | Site | Temporal Interval | % Available ASAR Pixels | N. Data | |
---|---|---|---|---|---|
Spain | ECV-A | K10 | 16/03/2005–29/03/2010 | 99.6% | 52 |
M05 | 01/04/2005–29/03/2010 | 52 | |||
I06 | 01/04/2005–29/03/2010 | 47 | |||
K09 | 19/03/2005–29/03/2010 | 49 | |||
I03 | 06/05/2005–05/04/2006 | 14 | |||
H09 | 16/03/2005–29/03/2010 | 55 | |||
L03 | 01/04/2005–29/03/2010 | 52 | |||
M09 | 16/03/2005–29/03/2010 | 55 | |||
K04 | 06/05/2005–29/03/2010 | 51 | |||
L07 | 16/03/2005–29/03/2010 | 55 | |||
J03 | 01/04/2005–29/03/2010 | 53 | |||
ECV-B | F06 | 01/04/2005–29/03/2010 | 99.4% | 59 | |
ECV-C | H11 | 16/03/2005–05/04/2006 | 92.5% | 18 | |
J14 | 16/03/2005–30/12/2009 | 43 | |||
H13 | 16/03/2005–29/03/2010 | 53 | |||
ECV-D | F11 | 19/03/2005–10/03/2010 | 75.4% | 50 | |
Ireland | Kilworth | 27/06/007–15/09/2009 | 92.1% | 77 | |
Pallaskenry | 26/08/2007–15/09/2009 | 80.5% | 63 | ||
Solohead | 23/05/2007–15/09/2009 | 94.7% | 70 | ||
Finland | Sodankylä | 09/05/2007–17/11/2009 | 100.0% | 120 | |
Kuusamo | 09/05/2007–21/10/2009 | 100.0% | 67 | ||
Suomussalmi | 18/10/2005–21/10/2009 | 90.3% | 101 | ||
Ilomantsi | 16/06/2007–23/11/2009 | 86.7% | 49 | ||
Pori | 13/04/2007–13/04/2010 | 83.7% | 111 |
3.4. Analysis of SM Spatial Variability
4. Results
4.1. Soil Moisture Temporal Variability
4.1.1. Spain
Cell | Site | ASAR vs. ECV | ASAR vs. In situ | ECV vs. In situ | |||
---|---|---|---|---|---|---|---|
R | p | R | p | R | p | ||
ECV-A | K10 | 0.73 | <0.001 | 0.60 | <0.001 | 0.82 | <0.001 |
M05 | 0.58 | <0.001 | 0.67 | <0.001 | 0.66 | <0.001 | |
I06 | 0.66 | <0.001 | 0.56 | <0.001 | 0.49 | <0.001 | |
K09 | 0.63 | <0.001 | 0.52 | <0.001 | 0.81 | <0.001 | |
I03 | 0.69 | 0.003 | 0.80 | <0.001 | 0.82 | <0.001 | |
H09 | 0.78 | <0.001 | 0.45 | <0.001 | 0.71 | <0.001 | |
L03 | 0.61 | <0.001 | 0.45 | <0.001 | 0.82 | <0.001 | |
M09 | 0.65 | <0.001 | 0.62 | <0.001 | 0.90 | <0.001 | |
K04 | 0.68 | <0.001 | 0.52 | <0.001 | 0.83 | <0.001 | |
L07 | 0.58 | <0.001 | 0.54 | <0.001 | 0.89 | <0.001 | |
J03 | 0.72 | <0.001 | 0.53 | <0.001 | 0.81 | <0.001 | |
mean | 0.69 | <0.001 | 0.59 | <0.001 | 0.87 | <0.001 | |
ECV-B | F06 | 0.80 | <0.001 | 0.56 | <0.001 | 0.64 | <0.001 |
ECV-C | H11 | 0.59 | 0.005 | 0.70 | <0.001 | 0.87 | <0.001 |
J14 | 0.79 | <0.001 | 0.54 | <0.001 | 0.71 | <0.001 | |
H13 | 0.60 | <0.001 | 0.52 | <0.001 | 0.79 | <0.001 | |
mean | 0.73 | <0.001 | 0.63 | <0.001 | 0.87 | <0.001 | |
ECV-D | F11 | 0.77 | <0.001 | 0.71 | <0.001 | 0.86 | <0.001 |
4.1.2. Ireland
Site | ASAR vs. ECV | ASAR vs. in situ | ECV vs. In situ | |||
---|---|---|---|---|---|---|
R | p | R | p | R | p | |
Kilworth | 0.82 | <0.001 | 0.70 | <0.001 | 0.76 | <0.001 |
Pallaskenry | 0.79 | <0.001 | 0.71 | <0.001 | 0.67 | <0.001 |
Solohead | 0.79 | <0.001 | 0.73 | <0.001 | 0.83 | <0.001 |
4.1.3. Finland
ISMN | Site | n | ASAR vs. ECV | ASAR vs. In situ | ECV vs. In situ | |||
---|---|---|---|---|---|---|---|---|
R | p | R | p | R | p | |||
FMI | Sodankylä | 120 | 0.52 | <0.001 | −0.18 | 0.02 | −0.24 | 0.004 |
GTK | Ilomantsi | 49 | 0.43 | 0.001 | 0.05 | 0.37 | 0.06 | 0.34 |
Kuusamo | 67 | 0.50 | <0.001 | −0.27 | 0.03 | −0.30 | 0.02 | |
Suomussalmi | 101 | 0.41 | <0.001 | −0.09 | 0.18 | 0.14 | 0.08 | |
Pori | 111 | 0.32 | <0.001 | 0.05 | 0.30 | −0.04 | 0.34 |
4.2. Soil Moisture Seasonal Based Analysis
ECV Cell | Winter | Spring | Summer | Autumn | ||||
---|---|---|---|---|---|---|---|---|
ASAR | ECV | ASAR | ECV | ASAR | ECV | ASAR | ECV | |
ECV-A | 0.02 | 0.46 | 0.67 | 0.68 | 0.04 | 0.01 | 0.57 | 0.85 |
ECV-B | −0.21 | −0.01 | 0.71 | 0.83 | 0.78 | 0.23 | 0.47 | 0.13 |
ECV-C | −0.69 | 0.76 | 0.60 | 0.78 | −0.08 | 0.75 | 0.78 | 0.87 |
ECV-D | 0.49 | 0.34 | 0.78 | 0.92 | 0.83 | 0.91 | 0.73 | 0.78 |
Kilworth | 0.25 | 0.26 | 0.91 | 0.94 | 0.43 | 0.59 | 0.77 | 0.75 |
Pallaskenry | −0.08 | −0.15 | 0.78 | 0.90 | 0.32 | 0.48 | 0.58 | 0.66 |
Solohead | −0.03 | 0.14 | 0.83 | 0.93 | 0.60 | 0.73 | 0.75 | 0.76 |
Sodankylä | - | - | −0.41 | −0.53 | −0.01 | 0.26 | 0.29 | 0.45 |
Kuusamo | - | - | 0.18 | 0.32 | −0.29 | −0.04 | −0.22 | −0.38 |
Ilomantsi | - | - | −0.17 | −0.23 | 0.46 | 0.30 | 0.49 | 0.80 |
Suomussalmi | - | - | −0.50 | 0.18 | 0.12 | 0.42 | 0.48 | 0.65 |
Pori | - | - | 0.24 | 0.17 | −0.08 | −0.09 | 0.25 | 0.23 |
4.3. Soil Moisture Spatial Variability
4.3.1. Spain
4.3.2. Ireland
4.3.3. Finland
5. Discussion
6. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bolten, J.; Crow, W. Improved prediction of quasi‐global vegetation conditions using remotely‐sensed surface soil moisture. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCC (2010 Update). GCOS-138. 2010, p. 113. Available online: http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf (accessed on 13 November 2015).
- Western, A.W.; Blöschl, G. On the spatial scaling of soil moisture. J. Hydrol. 1999, 217, 203–224. [Google Scholar] [CrossRef]
- Dubayah, R.; Wood, E.F.; Lavallee, D. Multiscaling analysis in distributed modelling and remote sensing: An application using soil moisture. In Scale in Remote Sensing and GIS; Lewis Publishers: Boca Raton, FL, USA, 1997; pp. 93–112. [Google Scholar]
- Schulte, R.; Diamond, J.; Finkele, K.; Holden, N.; Brereton, A. Predicting the soil moisture conditions of Irish grasslands. Irish J. Agric. Food Res. 2005, 44, 95–110. [Google Scholar]
- Raju, S.; Chanzy, A.; Wigneron, J.; Calvet, J.; Kerr, Y.; Laguerre, L. Soil moisture and temperature profile effects on microwave emission at low frequencies. Remote Sens. Environ. 1995, 54, 85–97. [Google Scholar] [CrossRef]
- Barrett, B.; Petropoulos, G.P. Satellite remote sensing of surface soil moisture. In Remote Sensing of Energy Fluxes and Soil Moisture Content; Petropoulos, G.P., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 85–120. [Google Scholar]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C 2015, in press. [Google Scholar]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Gao, B.-C.; Bevilacqua, R.M.; Jackson, T.J.; Njoku, E.G.; Rüdiger, C.; Calvet, J.-C.; Bindlish, R. WindSat global soil moisture retrieval and validation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2224–2241. [Google Scholar] [CrossRef]
- Wagner, W.; Scipal, K.; Pathe, C.; Gerten, D.; Lucht, W.; Rudolf, B. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- WACMOS Project. Available online: http://wacmos.itc.nl/?q=node/5 (accessed on 5 August 2014).
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; de Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. In Proceedings of the XXII International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, Melbourne, VIC., Australia, 25 August–1 September 2012.
- ESA Climate Change Initiative (CCI) Program. Available online: http://www.esa-cci.org/ (accessed on 5 June 2015).
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.H.; Wagner, W.; de Lannoy, G.; Reichle, R.; Bitar, A.A.; Dorigo, W.; Richaume, P.; et al. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Small, E.E.; Zreda, M. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The global soil moisture data bank. Bull. Am. Meteorol. Soc. 2000, 81, 1281–1299. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Albergel, C.; Dorigo, W.; Reichle, R.H.; Balsamo, G.; de Rosnay, P.; Muñoz-Sabater, J.; Isaksen, L.; de Jeu, R.; Wagner, W. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 2013, 14, 1259–1277. [Google Scholar] [CrossRef]
- Paulik, C.; Dorigo, W.; Wagner, W.; Kidd, R. Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 1–8. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing coarse-scale representativeness of in situ soil moisture measurements from the International Soil Moisture Network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Barrett, B.W.; Dwyer, E.; Padraig, W. Soil moisture retrieval from active spaceborn microwave observations: An evaluation of current techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; Hajj, M.E.; Kheir, R.B. Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modelling. Hydrol. Proc. 2008, 22, 9–20. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Vachaud, G.; de Silans Passerat, A.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Pratola, C.; Barrett, B.; Gruber, A.; Kiely, G.; Dwyer, E. Evaluation of a global soil moisture product from finer spatial resolution SAR data and ground measurements at Irish sites. Remote Sens. 2014, 6, 8190–8219. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ceballos, A. Mean soil moisture estimation using temporal stability analysis. J. Hydrol. 2005, 312, 28–38. [Google Scholar] [CrossRef]
- Teagasc 2010. Available online: http://www.teagasc.ie/agrifood/ (accessed on 5 June 2015).
- Rautiainen, K.; Lemmetyinen, J.; Pulliainen, J.; Vehviläinen, J.; Drusch, M.; Kontu, A.; Kainulainen, J.; Seppänen, J. L-Band radiometer observations of soil processes in boreal and subartic environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1483–1497. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the SMOS L2 soil moisture data in the REMEDHUS Network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Wagner, W.; Pathe, C.; Doubkova, M.; Sabel, D.; Bartsch, A.; Hasenauer, S.; Blöschl, G.; Scipal, K.; Martínez-Fernández, J.; Löw, A. Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors 2008, 8, 1174–1197. [Google Scholar] [CrossRef] [Green Version]
- De Jeu, R.A.M.; Parinussa, R.M.; Chung, D.; Dorigo, W.; Wagner, W.; Kidd, R. Soil Moisture Retrieval from Passive Microwave Sensors: Algorithm Theoretical Baseline Document, Version 2. Available online: http://www.esa-soilmoisture-cci.org (accessed on 5 June 2015).
- Chung, D.; Dorigo, W.; Hahn, S.; Melzer, T.; Paulik, C.; Reimer, C.; Vreugdenhil, M.; Wagner, W.; Kidd, R. Soil Moisture Retrieval from Active Microwave Sensors: Algorithm Theoretical Baseline Document, Version 2. Available online: http://www.esa-soilmoisture-cci.org (accessed on 5 June 2015).
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Drusch, M.; Wood, E.; Gao, H. Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Liu, Y.; de Jeu, R.A.M.; van Dijk, A.I.J.M.; Owe, M. TRMM-TMI satellite observed soil moisture and vegetation density (1998–2005) show strong connection with El Niño in eastern Australia. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; Dong, J.; Berg, A.A. Global soil moisture from satellite observation, land surface models, and ground data: Implications for data assimilation. J. Hydrometeorol. 2004, 5, 430–442. [Google Scholar] [CrossRef]
- Dorigo, W.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; de Jeu, R.A.M.; Naeimi, V. Error characterization of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.; Dorigo, W.; Hahn, S.; Melzer, T.; Paulik, C.; Reimer, C.; Vreugdenhil, M.; Wagner, W.; Kidd, R. ECV Production, Fusion of Soil Moisture Products: Algorithm Theoretical Baseline Document, Version 2. Available online: http://www.esa-soilmoisture-cci.org (accessed on 5 June 2015).
- Wagner, W.; Dorigo, W.; de Jeu, R.; Parinussa, R.; Scarrott, R.; Lahoz, K.W.; Doubková, M.; Dwyer, N.; Barrett, B. Comprehensive Error Characterization Report (CECR), Version 0.7. Available online: http://www.esa-soilmoisture-cci.org (accessed on 5 June 2015).
- ENVISAT ASAR Handbook. Available online: http://envisat.esa.int/pub/ESA_DOC/ENVISAT/ASAR/asar.ProductHandbook.2_2.pdf (accessed on 5 June 2015).
- Pathe, C.; Wagner, W.; Sabel, D.; Doubkova, M.; Basara, J.B. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 468–480. [Google Scholar] [CrossRef]
- Doubkova, M.; van Dijk, A.I.J.M.; Sabel, D.; Wagner, W.; Blöschl, G. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sens. Environ. 2012, 120, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.; Pathe, C.; Sabel, D.; Bartsch, A.; Künzer, C.; Scipal, K. Experimental 1 km soil moisture products from ENVISAT ASAR for southern Africa. In Proceedings of the ENVISAT Symposium 2007, Montreux, Switzerland, 23–27 April 2007.
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.C.; Bizzarri, B.; Wigneron, J.P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord. Hydrol. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.; Martinez-Fernandez, J. Soil moisture from operational meteorological sattelites. Hydrogeol. J. 2007, 15, 121–131. [Google Scholar] [CrossRef]
- Dobson, M.; Pierce, L.; Sarabandi, K.; Ulaby, F.; Sharik, T. Preliminary analysis of ERS-1 SAR for forest ecosystem studies. IEEE Trans. Geosci. Remote Sens. 1992, 30, 203–211. [Google Scholar] [CrossRef]
- Mladenova, I.; Lakshmi, V.; Wagner, W. Validation of ASAR global monitoring mode soil moisture product using the NAFE’05 data set. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2498–2508. [Google Scholar] [CrossRef]
- Sabel, D.; Doubkova, M.; Wagner, W.; Snoeij, P.; Attema, E. A global backscatter model for C-band SAR. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010.
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martines-Fernandez, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root means square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Albergel, C.; Brocca, L.; Wagner, W.; de Rosnay, P.; Calvet, J.C. Selection of performance metrics for global soil moisture products: The case of ASCAT product. In Remote Sensing of Energy Fluxes and Soil Moisture Content; Petropoulos, G.P., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 427–444. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2015. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef]
- Vereecken, H.; Kamai, T.; Harter, T.; Kasteel, R.; Hopmans, J.; Vanderborght, J. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Kiely, G. Spatial variability of remotely sensed soil moisture in a temperate-humid grassland catchment. Ecohydrology 2012, 5, 668–676. [Google Scholar] [CrossRef]
- Koyama, C.N.; Korres, W.; Fiener, P.; Shneider, K. Variability of surface soil moisture observed from multitemporal C-band Synthetic Aperture Radar and field data. Vadose Zone J. 2010, 9, 1014–1024. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume Scattering and Emission Theory, Advanced Systems and Applications; Artech House: Dedham, MA, USA, 1986; Volume III. [Google Scholar]
- Griesfeller, A.; Lahoz, W.A.; de Jeu, R.A.M.; Dorigo, W.; Haugen, L.E.; Svendby, T.M.; Wagner, W. Evaluation of satellite soil moisture products over Norway using ground-based observations. Int. J. Appl. Earth Obs. Geoinf. 2015. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Yilmaz, M.T.; Anderson, M.C.; Hain, C.R.; de Jeu, R.A.M. An intercomparison of remotely sensed soil moisture products at various scales over the Iberian Peninsula. Hydrol. Process. 2014, 28, 4865–4876. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Bitar, A.A.; Bindlish, R.; Jackson, T.J.; Berthelot, B.; Portet, G. Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over fourwatersheds. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.L.; Snoeij, P.; Hahmann, T.; Diedrich, E.; Doubkova, M. Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef]
- Zribi, M.; Kotti, F.; Amri, R.; Wagner, W.; Shabou, M.; Lili-Chabaane, Z.; Baghdadi, N. Soil moisture mapping in a semiarid region, based on ASAR/Wide Swath satellite data. Water Resour. Res. 2014, 50, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. J. Arid Environ. 2001, 49, 723–750. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.-L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–114. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratola, C.; Barrett, B.; Gruber, A.; Dwyer, E. Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland. Remote Sens. 2015, 7, 15388-15423. https://doi.org/10.3390/rs71115388
Pratola C, Barrett B, Gruber A, Dwyer E. Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland. Remote Sensing. 2015; 7(11):15388-15423. https://doi.org/10.3390/rs71115388
Chicago/Turabian StylePratola, Chiara, Brian Barrett, Alexander Gruber, and Edward Dwyer. 2015. "Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland" Remote Sensing 7, no. 11: 15388-15423. https://doi.org/10.3390/rs71115388
APA StylePratola, C., Barrett, B., Gruber, A., & Dwyer, E. (2015). Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland. Remote Sensing, 7(11), 15388-15423. https://doi.org/10.3390/rs71115388