Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier—The Case of Yuyao, China
"> Figure 1
<p>Study area. Red-Green-Blue composition: near-infrared, red and green bands of the multispectral charge coupled device camera (HJ-CCD) after the flood.</p> "> Figure 2
<p>Workflow of this study.</p> "> Figure 3
<p>Spectral reflectance of endmembers including (<b>a</b>) water; (<b>b</b>) vegetation; (<b>c</b>) impervious surface; (<b>d</b>) soil.</p> "> Figure 4
<p>Spatial distribution of training and testing points for “water” class.</p> "> Figure 5
<p>Fraction maps derived from multiple endmember spectral analysis (MESMA) including (<b>a</b>) water; (<b>b</b>) vegetation; (<b>c</b>) impervious surface; (<b>d</b>) soil.</p> "> Figure 6
<p>Out-of-bag (OOB) error <span class="html-italic">vs.</span> <span class="html-italic">ntree</span>.</p> "> Figure 7
<p>Flooded areas generated through RF classifier.</p> "> Figure 8
<p>Land cover types before the flood event.</p> "> Figure 9
<p>Importance of input variables.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
Sensor | Band | Wavelength/μm | Spatial Resolution/m | Image Breadth/km |
---|---|---|---|---|
CCD | 1 | 0.43–0.52 | 30 | |
2 | 0.52–0.60 | 30 | 360 | |
3 | 0.63–0.69 | 30 | ||
4 | 0.76–0.90 | 30 | ||
IRS | 5 | 0.75–1.10 | 150 | |
6 | 1.55–1.75 | 150 | 720 | |
7 | 3.50–3.90 | 150 | ||
8 | 10.5–12.5 | 300 |
3. Method
3.1. Workflow
3.2. Image Preprocessing
3.3. Multiple Endmember Spectral Mixture Analysis
3.3.1. Endmember Selection
3.3.2. Spectral Unmixing Modeling
Two-Endmember (35) | Three-Endmember (446) | Four-Endmember (2640) |
---|---|---|
water + shade | water + veg + shade | water + veg + imp + shade |
veg + shade | water + imp + shade | water + veg + soil + shade |
imp + shade | water + soil + shade | water + imp + soil + shade |
soil + shade | veg + imp + shade | veg + imp + soil + shade |
veg + soil + shade | ||
imp + soil + shade |
3.4. Random Forest Classifier
3.5. Accuracy Assessment
4. Results
4.1. Fraction Maps Derived from MESMA
4.2. Parameterization of Random Forest
4.3. Flood Mapping Results
Pre-Flood Land Cover Type | Area (km2) | Proportion |
---|---|---|
Woodland | 76.023 | 14.59% |
Cropland | 294.823 | 56.56% |
Built up area | 136.145 | 26.12% |
Bare soil | 4.100 | 0.79% |
Water | 10.124 | 1.94% |
Total | 521.215 | 100.00% |
Inundated Land Cover Type | Area (km2) | Proportion |
---|---|---|
Woodland | 0.075 | 0.07% |
Cropland | 76.133 | 75.66% |
Built up area | 24.373 | 24.23% |
Bare soil | 0.039 | 0.04% |
Total | 100.620 | 100.00% |
4.4. Results of Accuracy Assessment and Variable Importance
Classification Results | Validation Data | ||
---|---|---|---|
Flooded | Non-flooded | UA (%) | |
Flooded | 183 | 7 | 96.3 |
Non-flooded | 17 | 193 | 91.9 |
PA (%) | 91.5 | 96.5% | |
OA (%) | 94 | Kappa | 0.88 |
Class | Validation Data | |||||
---|---|---|---|---|---|---|
Woodland | Cropland | Built up | Bare soil | Water | UA (%) | |
Woodland | 158 | 0 | 0 | 0 | 0 | 100.00 |
Cropland | 31 | 173 | 0 | 0 | 0 | 84.80 |
Built up | 1 | 8 | 200 | 9 | 16 | 85.47 |
Bare soil | 1 | 0 | 0 | 191 | 0 | 99.48 |
Water | 9 | 19 | 0 | 0 | 184 | 86.79 |
PA (%) | 79.00 | 86.50 | 100.00 | 95.50 | 92.00 | |
OA (%) | 90.60 | Kappa | 0.8825 |
4.5. Comparison with Other Methods
MESMA + RF | RF-Only | MESMA+MLC | MLC-Only | NDWI-Thresholding | |
---|---|---|---|---|---|
OA (%) | 94 | 91.5 | 92 | 89 | 82.3 |
Kappa index | 0.88 | 0.83 | 0.84 | 0.78 | 0.65 |
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong Delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Guo, H.; Schlegel, I.; Tuan, V.Q.; Li, X.; Dech, S. Varying scale and capability of Envisat ASAR-WSM, TerraSAR-X Scansar and TerraSAR-X Stripmap data to assess urban flood situations: A case study of the Mekong Delta in Can Tho Province. Remote Sens. 2013, 5, 5122–5142. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G.; Kumar, S.; Waters, N. Real time estimation of the Calgary floods using limited remote sensing data. Water 2014, 6, 381–398. [Google Scholar] [CrossRef]
- Wang, Y.; Colby, J.D.; Mulcahy, K.A. An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int. J. Remote Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- Ticehurst, C.; Guerschman, J.P.; Chen, Y. The strengths and limitations in using the daily MODIS open water likelihood algorithm for identifying flood events. Remote Sens. 2014, 6, 11791–11809. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A. A hierarchical spatio-temporal Markov model for improved flood mapping using multi-temporal X-band SAR data. Remote Sens. 2010, 2, 2240–2258. [Google Scholar] [CrossRef]
- Gstaiger, V.; Huth, J.; Gebhardt, S.; Wehrmann, T.; Kuenzer, C. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. Int. J. Remote Sens. 2012, 33, 7291–7304. [Google Scholar] [CrossRef]
- Mallinis, G.; Gitas, I.Z.; Giannakopoulos, V.; Maris, F.; Tsakiri-Strati, M. An object-based approach for flood area delineation in a transboundary area using ENVISAT ASAR and LANDSAT TM data. Int. J. Digit. Earth 2013, 6, 124–136. [Google Scholar] [CrossRef]
- Brivio, P.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 2002, 23, 429–441. [Google Scholar] [CrossRef]
- Wang, Y. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int. J. Remote Sens. 2004, 25, 959–974. [Google Scholar] [CrossRef]
- Amini, J. A method for generating floodplain maps using IKONOS images and DEMs. Int. J. Remote Sens. 2010, 31, 2441–2456. [Google Scholar] [CrossRef]
- Gianinetto, M.; Villa, P. Mapping Hurricane Katrina’s widespread destruction in New Orleans using multisensor data and the normalized difference change detection (NDCD) technique. Int. J. Remote Sens. 2011, 32, 1961–1982. [Google Scholar] [CrossRef]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Filho, R.A.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Foody, G.M. Estimation of sub-pixel land cover composition in the presence of untrained classes. Comput. Geosci. 2000, 26, 469–478. [Google Scholar] [CrossRef]
- Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335–1341. [Google Scholar]
- Lu, D.; Weng, Q. Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1053–1062. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E.; Mausel, P. Application of spectral mixture analysis to Amazonian land-use and land-cover classification. Int. J. Remote Sens. 2004, 25, 5345–5358. [Google Scholar] [CrossRef]
- Tooke, T.R.; Coops, N.C.; Goodwin, N.R.; Voogt, J.A. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ. 2009, 113, 398–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, D.; Yang, B.; Sun, C.; Sun, M. Coastal wetland vegetation classification with a Landsat Thematic Mapper image. Int. J. Remote Sens. 2011, 32, 545–561. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens. Environ. 2013, 133, 251–264. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- Gan, M.; Deng, J.; Zheng, X.; Hong, Y.; Wang, K. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis. PLoS ONE 2014, 9, e112202. [Google Scholar] [CrossRef] [PubMed]
- Michishita, R.; Jiang, Z.; Xu, B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens. Environ. 2012, 117, 3–18. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Myint, S.W.; Okin, G.S. Modelling land-cover types using multiple endmember spectral mixture analysis in a desert city. Int. J. Remote Sens. 2009, 30, 2237–2257. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, R.; Joshi, P.K. Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion. Appl. Geol. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Rosa, D.L.; Wiesmann, D. Land cover and impervious surface extraction using parametric and non-parametric algorithms from the open-source software R: An application to sustainable urban planning in Sicily. GISci. Remote Sens. 2013, 50, 231–250. [Google Scholar]
- Hayes, M.H.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Mishra, N.B.; Crews, K.A. Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with random forest. Int. J. Remote Sens. 2014, 35, 1175–1198. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Brenning, A. A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens. Environ. 2014, 141, 14–23. [Google Scholar] [CrossRef]
- Feng, Q.; Gong, J. Destriping remotely sensed data using anisotropic diffusion in wavelet domain. In Proceedings of 2014 4th IEEE International Conference on Information Science and Technology (ICIST), Shenzhen, China, 26–28 April 2014; pp. 316–319.
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Roberts, D.A.; Halligan, K.; Dennison, P.E. VIPER Tools User Manual (Version1.5). Available online: http:// www.vipertools.org/ (assessed on 12 February 2015).
- American Museum of Natural History, Center for Biodiversity and Conservation. Available online: http://biodiversityinformatics.amnh.org/ (assessed on 12 February 2015).
- Random Forest Classification. Available online: http://bitbucket.org/rsbiodiv/randomforest classification/ (assessed on 12 February 2015).
- McFeeters, S. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.; Nelson, A. Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Stow, D. The effect of training strategies on supervised classification at different spatial resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1155–1162. [Google Scholar]
- Juan, D.; Sandra, G. Development of a sub-pixel analysis method applied to dynamic monitoring of floods. Int. J. Remote Sens. 2012, 33, 2277–2295. [Google Scholar]
- Memon, A.; Muhammad, S.; Rahman, S.; Haq, M. Flood monitoring and damage assessment using water indices: A case study of Pakis tan flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef]
- Rogers, A.; Kearney, M. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Gong, J.; Liu, J.; Li, Y. Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier—The Case of Yuyao, China. Remote Sens. 2015, 7, 12539-12562. https://doi.org/10.3390/rs70912539
Feng Q, Gong J, Liu J, Li Y. Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier—The Case of Yuyao, China. Remote Sensing. 2015; 7(9):12539-12562. https://doi.org/10.3390/rs70912539
Chicago/Turabian StyleFeng, Quanlong, Jianhua Gong, Jiantao Liu, and Yi Li. 2015. "Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier—The Case of Yuyao, China" Remote Sensing 7, no. 9: 12539-12562. https://doi.org/10.3390/rs70912539
APA StyleFeng, Q., Gong, J., Liu, J., & Li, Y. (2015). Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier—The Case of Yuyao, China. Remote Sensing, 7(9), 12539-12562. https://doi.org/10.3390/rs70912539