Mapping US Urban Extents from MODIS Data Using One-Class Classification Method
"> Figure 1
<p>Study area consisting of contiguous states in the US, with locations of two examples of tiles of MODIS data. Left box, labeled “<b>Area 1</b>”, covers the H08V05 tile of original MODIS data, and right box, labeled “<b>Area 2</b>”, covers the H11V05 tile.</p> "> Figure 2
<p>Examples of selected MODIS data at four different times in Area 2. Location of tile Area 2 is shown in <a href="#remotesensing-07-10143-f001" class="html-fig">Figure 1</a>. (<b>a</b>) MODIS image from 14 March to 21 March 2010; (<b>b</b>) MODIS image from 4 July to 11 July 2010; (<b>c</b>) MODIS image from 6 September to 13 September 2010; and (<b>d</b>) MODIS image from 9 November to 16 November 2010.</p> "> Figure 3
<p>Procedure for proposed urban-mapping scheme using PUL one-class classification algorithm.</p> "> Figure 4
<p>Distribution of selected urban sample points across the US.</p> "> Figure 5
<p>Urban map covering the US continent, obtained using proposed one-class classification scheme.</p> "> Figure 6
<p>Relationship between omission rates for cities and housing unit count per square kilometer.</p> "> Figure 7
<p>Comparison of patterns for six selected cities from one-class-based urban map, urban extent extracted from Land Cover Type Yearly L3 Global 500m SIN Grid (MCD12Q1), US urban vector map released by the United States Census Bureau and NLCD urban map created by the Multi-Resolution Land Characteristics Consortium (from left to right). The cities (from top to bottom) are Los Angeles, San Francisco, Wheat Ridge, St. Louis, Omaha and Lincoln.</p> "> Figure 8
<p>Comparison of prediction maps in Area 2 with different temporal features. Location of Area 2 can be seen in <a href="#remotesensing-07-10143-f001" class="html-fig">Figure 1</a>. (<b>a</b>) Prediction map with single temporal feature 4 July 2010; (<b>b</b>) prediction map with two temporal features, 14 March and 4 July 2010; and (<b>c</b>) prediction map with four temporal features 14 March, 4 July, 6 September and 9 November 2010.</p> "> Figure 9
<p>Comparison of Area 1 (<b>a</b>) pre-masking map, (<b>b</b>) map masked using DMSP-OLS data, and (<b>c</b>) US urban vector map released by United States Census Bureau. Location of Area 1 in is shown in <a href="#remotesensing-07-10143-f001" class="html-fig">Figure 1</a>.</p> ">
Abstract
:1. Introduction
2. Data and Method
2.1. Urban Extent
2.2. Dataset
2.3. Method
2.3.1. Sampling
2.3.2. PUL
2.3.3. Post-Processing
2.4. Accuracy Assessment
3. Results
Reference data | Kappa Coefficient | ||||
---|---|---|---|---|---|
Non-urban | Urban | Total | User’s Accuracy (%) | ||
Classified Data | |||||
Non-urban | 10,912 | 1130 | 12,042 | 90.61 | |
Urban | 288 | 7670 | 7958 | 96.38 | |
Total | 11,200 | 8800 | 20,000 | ||
0.8546 | |||||
Producer’s accuracy | 97.42% | 87.15% | 92.91% (Overall map accuracy) |
City Size by Population * | Reference Number | Predicted Number | Omission Rate (%) |
---|---|---|---|
Large | 1 | 1 | 0 |
Medium | 7 | 7 | 0 |
Medium–small | 28 | 28 | 0 |
Small | 240 | 240 | 0 |
Very small | 3197 | 3115 | 2.56 |
Total | 3473 | 3391 | 2.36 |
City Size by Population (million) | Reference Number | Predicted Number | Omission Rate (%) |
---|---|---|---|
0.08–0.1 | 118 | 118 | 0 |
0.06–0.08 | 193 | 193 | 0 |
0.04–0.06 | 355 | 352 | 0.85 |
0.02–0.04 | 983 | 962 | 2.14 |
0.01–0.02 | 1,548 | 1,490 | 3.75 |
Total | 3,197 | 3,115 | 2.56 |
4. Discussion
4.1. Urban Range Detection
4.2. Multi-Temporal Data
User’s Accuracy (%) | Producer’s Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient | |
---|---|---|---|---|
Single | 97.04 | 78.82 | 88.20 | 0.775 |
Double | 98.08 | 81.60 | 90.00 | 0.800 |
Quadruple | 98.14 | 84.50 | 91.45 | 0.829 |
4.3. Map Calibration with DMSP-OLS Data
5. Conclusions
Acknowledgements
Author Contritutions
Conflicts of Interest
References
- Mills, G. Cities as agents of global change. Int. J. Climatol. 2007, 27, 1849–1857. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar]
- Wu, J.G. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar]
- Cai, S.S.; Liu, D.S.; Sulla-Menashe, D.; Friedl, M.A. Enhancing MODIS land cover product with a spatial-temporal modeling algorithm. Remote Sens. Environ. 2014, 147, 243–255. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on “urban ecoregions”. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Latham, J.; di Gregorio, A.; Brockman, C.; Witt, R.; et al. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2007, Barcelona, Spain, 23–28 July 2007.
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Rerez, J.E. GLOBCOVER 2009—Products Description and Validation Reports. 2011. Available online: http://ionia1.esrin.esa.int/docs/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 14 May 2015).
- CIESIN, Center for International Earth Science Information Network. Global Rural-Urban Mapping Project (GRUMP), Alpha Version: Urban Extents. 2004. Available online: http://sedac.ciesin.columbia.edu/gpw (accessed on 1 August 2009).
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Mciver, D.K.; Woodcock, C.E. Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 1377–1386. [Google Scholar]
- Yu, L.; Wang, J.; Li, X.C.; Li, C.C.; Zhao, Y.Y.; Gong, P. A multi-resolution global land cover dataset through multisource data aggregation. Sci. China: Earth Sci. 2014. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; van Driel, J.N. Completion of the 1990’s national land cover data set for the conterminous United States. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Fry, J.; Xian, G.; Jin, S.; Dewitz, J.; Homer, C.; Yang, L.; Barnes, C.; Herold, N.; Wickham, J. Completion of the 2006 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 national land cover database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Munoz-Mari, J.; Bruzzone, L.; Camps-Valls, G. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2683–2692. [Google Scholar]
- Guo, Q.H.; Li, W.K.; Liu, D.S.; Chen, J. A framework for supervised image classification with incomplete training samples. Photogramm. Eng. Remote Sens. 2012, 78, 595–604. [Google Scholar]
- Lu, D.; Weng, Q. Extraction of urban impervious surfaces from an IKONOS image. Int. J. Remote Sens. 2009, 30, 1297–1311. [Google Scholar]
- Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote Sens. Environ. 2006, 104, 1–14. [Google Scholar]
- Guo, Q.; Li, W.; Liu, Y.; Tong, D. Predicting potential distributions of geographic events using one-class data: Concepts and methods. Int. J. Geogr. Inf. Sci. 2011, 25, 1697–1715. [Google Scholar]
- Jeon, B.; Landgrebe, D.A. Partially supervised classification using weighted unsupervised clustering. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1073–1079. [Google Scholar]
- Scholkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar]
- Li, P.; Xu, H.; Li, S. Urban impervious surface extraction from very high resolution imagery by one-class support vector machine. In Proceedings of the 100 Years ISPRS Advancing Remote Sensing Science, Vienna, Austria, 5–7 July 2010; pp. 366–370.
- Li, P.J.; Xu, H.Q. Land-cover change detection using one-class support vector machine. Photogramm. Eng. Remote Sens. 2010, 76, 255–263. [Google Scholar]
- Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. Mapping specific habitats from remotely sensed imagery: Support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol. Inform. 2007, 2, 83–88. [Google Scholar]
- Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. One-class classification for mapping a specific land-cover class: SVDD classification of fenland. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1061–1073. [Google Scholar]
- Li, W.K.; Guo, Q.H.; Elkan, C. A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 717–725. [Google Scholar]
- Elkan, C.; Noto, K. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008. [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar]
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar]
- Duranton, G.; Puga, D. From sectoral to functional urban specialisation. J. Urban Econ. 2005, 57, 343–370. [Google Scholar]
- Lu, D.S.; Tian, H.Q.; Zhou, G.M.; Ge, H.L. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar]
- McIntyre, N.E. Urban ecology: Definitions and goals. In The Routledge Handbook on Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: Abingdon, UK, 2011. [Google Scholar] [CrossRef]
- Potere, D.; Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 2007, 69, 55–80. [Google Scholar]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar]
- Small, C. A global analysis of urban reflectance. Int. J. Remote Sens. 2005, 26, 661–681. [Google Scholar]
- Weng, Q.H. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar]
- Sutton, P.; Elvidge, C.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–554. [Google Scholar]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar]
- National Atlas of the United States. Available online: http://nationalatlas.gov/atlasftp-1m.html (accessed on 10 August 2014).
- Elvidge, C.D.; Baugh, K.E.; Hobson, V.R.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Cocero, D. Satellite inventory of human settlements using nocturnal radiation emissions: A contribution for the global toolchest. Glob. Chang. Biol. 1997, 3, 387–395. [Google Scholar]
- Gallo, K.P.; Elvidge, C.D.; Yang, L.; Reed, B.C. Trends in night-time city lights and vegetation indices associated with urbanization within the conterminous USA. Int. J. Remote Sens. 2004, 25, 2003–2007. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Safran, J.; Ebener, S. The NightSat mission concept. Int. J. Remote Sens. 2007, 28, 3645–2670. [Google Scholar]
- US Census Bureau. Available online: http://www2.census.gov/geo/tiger/TIGER2010/UA/2010/ (accessed on 24 August 2014).
- Sung, C.Y.; Li, M.-H. Considering plant phenology for improving the accuracy of urban impervious surface mapping in a subtropical climate regions. Int. J. Remote Sens. 2012, 33, 261–275. [Google Scholar]
- Wu, C.; Yuan, F. Seasonal sensitivity analysis of impervious surface estimation with satellite imagery. Photogramm. Eng. Remote Sens. 2007, 73, 1393–1401. [Google Scholar]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar]
- Fisher, P. The pixel: A snare and a delusion. Int. J. Remote Sens. 1997, 18, 679–685. [Google Scholar]
- Cracknell, A.P. Synergy in remote sensing – What’s in a pixel? Int. J. Remote Sens. 1998, 19, 2025–2047. [Google Scholar]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, B.; Guo, Q.; Fang, F.; Su, Y.; Wang, R. Mapping US Urban Extents from MODIS Data Using One-Class Classification Method. Remote Sens. 2015, 7, 10143-10163. https://doi.org/10.3390/rs70810143
Wan B, Guo Q, Fang F, Su Y, Wang R. Mapping US Urban Extents from MODIS Data Using One-Class Classification Method. Remote Sensing. 2015; 7(8):10143-10163. https://doi.org/10.3390/rs70810143
Chicago/Turabian StyleWan, Bo, Qinghua Guo, Fang Fang, Yanjun Su, and Run Wang. 2015. "Mapping US Urban Extents from MODIS Data Using One-Class Classification Method" Remote Sensing 7, no. 8: 10143-10163. https://doi.org/10.3390/rs70810143
APA StyleWan, B., Guo, Q., Fang, F., Su, Y., & Wang, R. (2015). Mapping US Urban Extents from MODIS Data Using One-Class Classification Method. Remote Sensing, 7(8), 10143-10163. https://doi.org/10.3390/rs70810143