Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data
"> Figure 1
<p>Field measurement sites. (<b>a</b>) Distribution of three field measurement regions; (<b>b</b>) Dayekou field sites in Gansu; (<b>c</b>) Taihe field sites in Jiangxi; (<b>d</b>) Puer field sites in Yunnan; (<b>b</b>–<b>d</b>) the background color map represents the MODIS land cover (LC) forest types.</p> "> Figure 2
<p>The schematic diagram of the ANN model proposed in this study. There are 11 neurons in the input layer, 11 neurons in the hidden layer and 1 neuron in the output layer.</p> "> Figure 3
<p>Maps of modeled and averaged GLAS-derived tree heights over continental China at 1-km spatial resolution. (<b>a</b>) The modeled height map using the trained ANN model proposed in this paper; (<b>b</b>) GLAS tree height map. The GLAS tree height map is made from the interpolation of the averaged GLAS-derived tree heights.</p> "> Figure 4
<p>Ground validation result of the modeled tree heights, <span class="html-italic">H<sub>Simrad</sub></span>, <span class="html-italic">H<sub>Ni</sub></span> and GLAS tree height map. (<b>a</b>) The comparison between modeled tree heights and field measured tree heights; (<b>b</b>) The comparison between <span class="html-italic">H<sub>Simrad</sub></span> and field measured tree heights; (<b>c</b>) The comparison between <span class="html-italic">H<sub>Ni</sub></span> and field measured tree heights; (<b>d</b>) The comparison between averaged GLAS tree heights and field measured tree heights.</p> "> Figure 5
<p>The comparison results between modeled tree heights and actual GLAS derived tree heights. (<b>a</b>) The comparison between modeled tree heights and discrete GLAS tree heights; (<b>b</b>) the comparison between modeled tree heights and averaged GLAS tree heights; (<b>c</b>) statistical characteristics of modeled tree heights, discrete GLAS tree heights and averaged GLAS tree heights.</p> "> Figure 6
<p>The difference map of modeled tree heights with averaged GLAS tree heights.</p> "> Figure 7
<p>The comparison result between modeled tree heights and Simard tree heights. (<b>a</b>) The difference map of modeled tree heights with Simard tree heights; (<b>b</b>) the comparison between modeled tree heights and Simard tree heights.</p> "> Figure 8
<p>The comparison result between the modeled tree heights and the <span class="html-italic">H<sub>Ni</sub></span> s. (<b>a</b>) The difference map of the modeled tree heights against <span class="html-italic">H<sub>Ni</sub></span>; (<b>b</b>) the comparison between the modeled tree heights and <span class="html-italic">H<sub>Ni</sub></span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Processing
2.1.1. ICESat Data and Processing
2.1.2. Land Surface Reflectance
2.1.3. Climate Data
2.1.4. Ancillary Data
2.1.5. Field-Measured Tree Heights
Sites | Number of Plots | Plot Size (m) | Acquisition Year | Forest Type | References |
---|---|---|---|---|---|
Dayekou, Gansu | 36 | 20 × 20, 25 × 25 | 2008 | Picea Crassifolia | [29] |
Taihe, Jiangxi | 22 | 50 × 50 | 2012 | Masson pine, Slash Pine | |
Puer, Yunnan | 34 | 15 × 15 | 2013 | Pinus Kesiya, Fir, Eucalyptus |
2.2. Methods
2.2.1. GLAS Tree Height Estimation
2.2.2. Tree Height Modeling
2.2.3. Error Analysis
2.2.4. Calibration and Comparison with Existing Canopy Height Products
3. Results and Discussion
3.1. Canopy Height Map in China
3.2. Ground Validation and Error Analysis
3.3. Actual GLAS-Derived Tree Height Validation and Error Analysis
3.4. Comparison with Existing Tree Height Map
3.4.1. Comparison with Simard Tree Heights Map
3.4.2. Inter-Comparison with Ni Tree Heights
4. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hese, S.; Lucht, W.; Schmullius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schröter, K. Global biomass mapping for an improved understanding of the CO2 balance—The Earth observation mission Carbon-3D. Remote Sens. Environ. 2005, 94, 94–104. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne LiDAR. J. Geophys. Res.: Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Ni, X.; Park, T.; Choi, S.; Shi, Y.; Cao, C.; Wang, X.; Lefsky, M.A.; Simard, M.; Myneni, R.B. Allometric scaling and resource limitations model of tree heights: Part 3. Model optimization and testing over continental China. Remote Sens. 2014, 6, 3533–3553. [Google Scholar] [CrossRef]
- Bellassen, V.; Delbart, N.; Le Maire, G.; Luyssaert, S.; Ciais, P.; Viovy, N. Potential knowledge gain in large-scale simulations of forest carbon fluxes from remotely sensed biomass and height. For. Ecol. Manag. 2011, 261, 515–530. [Google Scholar] [CrossRef]
- Baghdadi, N.; Le Maire, G.; Fayad, I.; Bailly, J.S.; Nouvellon, Y.; Lemos, C.; Hakamada, R. Testing different methods of forest height and aboveground biomass estimations from ICESat/GLAS data on Eucalyptus plantations in Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 290–299. [Google Scholar] [CrossRef]
- Pang, Y.; Lefsky, M.; Sun, G.Q.; Ranson, J. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne LiDAR. Remote Sens. Environ. 2011, 115, 2798–2809. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.S.; Barbier, N.; Gond, V.; El Hajj, M.; Fabre, F.; Bourgine, B. Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions. Remote Sens. 2014, 6, 11883–11914. [Google Scholar] [CrossRef] [Green Version]
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- Van Leeuwen, M.; Nieuwenhuis, M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur. J. For. Res. 2010, 129, 749–770. [Google Scholar] [CrossRef]
- Schutz, B.; Zwally, H.; Shuman, C.; Hancock, D.; Di Marzio, J. Overview of the ICESat mission. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Shi, Y.L.; Choi, S.; Ni, X.L.; Ganguly, S.; Zhang, G.; Duong, H.V.; Lefsky, M.A.; Simard, M.; Saatchi, S.S.; Lee, S.; et al. Allometric scaling and resource limitations model of tree heights: Part 1. Model optimization and testing over continental USA. Remote Sens. 2013, 5, 284–306. [Google Scholar] [CrossRef]
- Lee, S.; Ni-Meister, W.; Yang, W.; Chen, Q. Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sens. Environ. 2011, 115, 2776–2785. [Google Scholar] [CrossRef]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience laser altimeter system (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Gong, P.; Li, Z.; Huang, H.; Sun, G.; Wang, L. ICEsat GLAS data for urban environment monitoring. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1158–1172. [Google Scholar] [CrossRef]
- Harding, D.J.; Carabajal, C.C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.; Kimes, D.; Blair, J.; Kovacs, K. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens. Environ. 2008, 112, 107–117. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Urban, T.J.; Gutierrez, R.; Schutz, B.E. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping. J. Geophys. Res.: Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Milesi, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yu, Y.; Myneni, R.B. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens. Environ. 2014, 151, 44–56. [Google Scholar] [CrossRef]
- Choi, S.; Ni, X.L.; Shi, Y.L.; Ganguly, S.; Zhang, G.; Duong, H.V.; Lefsky, M.A.; Simard, M.; Saatchi, S.S.; Lee, S.; et al. Allometric scaling and resource limitations model of tree heights: Part 2. Site based testing of the model. Remote Sens. 2013, 5, 202–223. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J. An airborne LiDAR sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA. Remote Sens. Environ. 2011, 115, 1532–1542. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ. 2010, 114, 138–154. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Espirito-Santo, F.D.; Hunter, M.O.; de Oliveira, R. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.; Braswell, R.H.; Curtis, P.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef]
- Krige, D.G. A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand. Master’s Thesis, University of Witwatersrand, Johannesburg, South Africa, 1951. [Google Scholar]
- NASA. Land Processes Distributed Active Archive Center (LP DAAC), ASTER L1B; USGS/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2001. [Google Scholar]
- Ni, X.L.; Shi, Y.L.; Choi, S.H.; Cao, C.X.; Myneni, R.B. Estimation of tree heights using remote sensing data and an allometric scaling and resource limitations (ASRL) model. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7248–7251.
- He, Q.C.E.; An, R.; Li, Y. Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest. Forests 2013, 4, 984–1002. [Google Scholar] [CrossRef]
- Boudreau, J.; Nelson, R.F.; Margolis, H.A.; Beaudoin, A.; Guindon, L.; Kimes, D.S. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ. 2008, 112, 3876–3890. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W.H. A logical calculus of the ideas immanent in neural nets. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Samardak, A.; Nogaret, A.; Janson, N.B.; Balanov, A.G.; Farrer, I.; Ritchie, D.A. Noise-controlled signal transmission in a multithread semiconductor Neuron. Phys. Rev. Lett. 2009, 102, 226802. [Google Scholar] [CrossRef] [PubMed]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Wang, L.X.; Mendel, J.M. Back-propagation fuzzy systems as nonlinear dynamic system identifiers. In Proceedings of the IEEE 1992 International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992; pp. 1409–1418.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, X.; Zhou, Y.; Cao, C.; Wang, X.; Shi, Y.; Park, T.; Choi, S.; Myneni, R.B. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data. Remote Sens. 2015, 7, 8436-8452. https://doi.org/10.3390/rs70708436
Ni X, Zhou Y, Cao C, Wang X, Shi Y, Park T, Choi S, Myneni RB. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data. Remote Sensing. 2015; 7(7):8436-8452. https://doi.org/10.3390/rs70708436
Chicago/Turabian StyleNi, Xiliang, Yuke Zhou, Chunxiang Cao, Xuejun Wang, Yuli Shi, Taejin Park, Sungho Choi, and Ranga B. Myneni. 2015. "Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data" Remote Sensing 7, no. 7: 8436-8452. https://doi.org/10.3390/rs70708436