Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach
"> Figure 1
<p>Elevation over Mainland China and location of 596 meteorological stations.</p> "> Figure 2
<p>Flow chart of the downscaling algorithm used in the study.</p> "> Figure 3
<p>Scatter plots of the agreements between the annual precipitations of China mainland for the year of 2001 and 2010 derived from the TRMM 3B43 and (<b>a</b>) the multiple linear regression model, (<b>b</b>) exponential regression model, and (<b>c</b>) random Forest model at spatial resolutions of 0.25°, respectively.</p> "> Figure 4
<p>The final predicted annual precipitation of Mainland China at a 1 km resolution for the years of 2001 and 2010, using (<b>a</b>) the multiple linear; (<b>b</b>) exponential; (<b>c</b>) Random Forest and regression model, respectively.</p> "> Figure 4 Cont.
<p>The final predicted annual precipitation of Mainland China at a 1 km resolution for the years of 2001 and 2010, using (<b>a</b>) the multiple linear; (<b>b</b>) exponential; (<b>c</b>) Random Forest and regression model, respectively.</p> "> Figure 5
<p>Scatter plot of the measured annual precipitation from 596 meteorology stations <span class="html-italic">versus</span> the predicted precipitation derived from (<b>a</b>) the multiple linear; (<b>b</b>) exponential; (<b>c</b>) Random Forest regression model, and (<b>d</b>) original TRMM 3B43 for the years of 2001 and 2010 over Mainland China, respectively.</p> "> Figure 5 Cont.
<p>Scatter plot of the measured annual precipitation from 596 meteorology stations <span class="html-italic">versus</span> the predicted precipitation derived from (<b>a</b>) the multiple linear; (<b>b</b>) exponential; (<b>c</b>) Random Forest regression model, and (<b>d</b>) original TRMM 3B43 for the years of 2001 and 2010 over Mainland China, respectively.</p> "> Figure 6
<p>Importance of geospatial predictors for precipitation downscaling in (<b>a</b>) arid; (<b>b</b>) semi-arid; (<b>c</b>) semi-humid; and (<b>d</b>) humid regions for the years of 2001 and 2010, illustrated by the MDG of attributes as assigned by RF.</p> "> Figure 6 Cont.
<p>Importance of geospatial predictors for precipitation downscaling in (<b>a</b>) arid; (<b>b</b>) semi-arid; (<b>c</b>) semi-humid; and (<b>d</b>) humid regions for the years of 2001 and 2010, illustrated by the MDG of attributes as assigned by RF.</p> "> Figure 7
<p>Annual precipitation of China mainland at spatial resolution 0.25° × 0.25°for the period years from 2001 to 2010, aggregated from the original monthly TRMM 3B43 V7 precipitation product.</p> "> Figure 7 Cont.
<p>Annual precipitation of China mainland at spatial resolution 0.25° × 0.25°for the period years from 2001 to 2010, aggregated from the original monthly TRMM 3B43 V7 precipitation product.</p> "> Figure 8
<p>Scatter plots of the agreements between the annual precipitations of China mainland in 2001 derived from the TRMM 3B43 and (<b>A</b>) the multiple linear regression models, (<b>B</b>) exponential models, and (<b>C</b>) random forest models at spatial resolutions of (<b>a</b>) 0.25°, (<b>b</b>) 0.50°, (<b>c</b>) 0.75°, (<b>d</b>) 1.0°, (<b>e</b>) 1.25°, and (<b>f</b>) 1.50°, respectively. Principal component analysis has been used in the multiple linear and exponential regression modeling.</p> "> Figure 8 Cont.
<p>Scatter plots of the agreements between the annual precipitations of China mainland in 2001 derived from the TRMM 3B43 and (<b>A</b>) the multiple linear regression models, (<b>B</b>) exponential models, and (<b>C</b>) random forest models at spatial resolutions of (<b>a</b>) 0.25°, (<b>b</b>) 0.50°, (<b>c</b>) 0.75°, (<b>d</b>) 1.0°, (<b>e</b>) 1.25°, and (<b>f</b>) 1.50°, respectively. Principal component analysis has been used in the multiple linear and exponential regression modeling.</p> "> Figure 9
<p>The final predicted annual precipitation of China mainland at the 1 km resolution for the year 2001 using the multiple linear regression models (<b>A</b>); exponential models (<b>B</b>); and random forest models (<b>C</b>) built at spatial resolutions of (<b>a</b>) 0.25°, (<b>b</b>) 0.50°, (<b>c</b>) 0.75°, (<b>d</b>) 1.0°, (<b>e</b>) 1.25°, and (<b>f</b>) 1.50°, respectively.</p> "> Figure 9 Cont.
<p>The final predicted annual precipitation of China mainland at the 1 km resolution for the year 2001 using the multiple linear regression models (<b>A</b>); exponential models (<b>B</b>); and random forest models (<b>C</b>) built at spatial resolutions of (<b>a</b>) 0.25°, (<b>b</b>) 0.50°, (<b>c</b>) 0.75°, (<b>d</b>) 1.0°, (<b>e</b>) 1.25°, and (<b>f</b>) 1.50°, respectively.</p> "> Figure 10
<p>Scatter plot of the measured annual precipitation from 596 meteorology stations versus the predicted precipitation extracted from the final downscaled using the multiple linear regression models, exponential models, and random forest models built at spatial resolutions of 0.25°, 0.50°, 0.75°, 1.0°, 1.25°, and 1.50°, respectively, for the year 2001 over China mainland without gap-filling processing.</p> "> Figure 10 Cont.
<p>Scatter plot of the measured annual precipitation from 596 meteorology stations versus the predicted precipitation extracted from the final downscaled using the multiple linear regression models, exponential models, and random forest models built at spatial resolutions of 0.25°, 0.50°, 0.75°, 1.0°, 1.25°, and 1.50°, respectively, for the year 2001 over China mainland without gap-filling processing.</p> "> Figure 11
<p>The final predicted annual precipitation of China mainland at the 1 km resolution from 2001 to 2010 using random Forest regression model.</p> "> Figure 11 Cont.
<p>The final predicted annual precipitation of China mainland at the 1 km resolution from 2001 to 2010 using random Forest regression model.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Dataset and Methodology
3.1. Dataset
3.1.1. Tropical Rainfall Measuring Mission
3.1.2. Normalized Difference Vegetation Index
3.1.3. ASTER Global Digital Elevation Model
3.1.4. Rain Gauge Data
Variables | Dataset | Year | Resolution |
---|---|---|---|
Precipitation (mm) | TRMM3B43 | 2001, 2010 | Monthly, 0.25° |
NDVI | MOD13A3 | 2001, 2010 | Monthly, 1000 m |
Max_NDVI | MOD13A3 | 2001, 2010 | Annual, 1000 m |
Min_NDVI | MOD13A3 | 2001, 2010 | Annual, 1000 m |
Range_NDVI | MOD13A3 | 2001, 2010 | Annual, 1000 m |
Elevation (m) | GDEM | 2010 | -, 30 m |
Slope | GDEM | 2010 | -, 30 m |
Aspect | GDEM | 2010 | -, 30 m |
Latitude | - | - | -, - |
Longitude | - | - | -, - |
3.2. Methodology
3.2.1. Linear Regression Model
3.2.2. Exponential Regression Model
3.2.3. Random Forest Model
3.3. Validation
3.3.1. Two-Fold cross Validation
3.3.2. Validation with Ground Observations
4. Results and Validation
Linear Regression | Exponential Regression | RF Regression | ||
---|---|---|---|---|
2001 | RW_prd. | 2.16 | 3.44 | 1.14 |
RW_res. | −1.17 | −2.44 | −0.14 | |
2010 | RW_prd. | 2.14 | 2.01 | 1.07 |
RW_res. | −1.14 | −1.01 | −0.07 |
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Appendix
Conflicts of Interest
References
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Langella, G.; Basile, A.; Bonfante, A.; Terribile, F. High-resolution space-time rainfall analysis using integrated ANN inference systems. J. Hydrol. 2010, 387, 328–342. [Google Scholar] [CrossRef]
- Li, M.; Shao, Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010, 385, 51–64. [Google Scholar] [CrossRef]
- Goodrich, D.; Faurès, J.; Woolhiser, D.; Lane, L.; Sorooshian, S. Measurement and analysis of small-scale convective storm rainfall variability. J. Hydrol. 1995, 173, 283–308. [Google Scholar] [CrossRef]
- McGuffie, K.; Henderson-Sellers, A.; Holbrook, N.; Kothavala, Z.; Balachova, O.; Hoekstra, J. Assessing simulations of daily temperature and precipitation variability with global climate models for present and enhanced greenhouse climates. Int. J. Climatol. 1999, 19, 1–26. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Giorgi, F.; Marinucci, M.R.; Bates, G.T. Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Weather Rev. 1993, 121, 2794–2813. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Res, C.; Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Climate Res. 2002, 22, 99–113. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef]
- Steiner, M.; Smith, J.A.; Burges, S.J.; Alonso, C.V.; Darden, R.W. Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res. 1999, 35, 2487–2503. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A gauge-based analysis of daily precipitation over east Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Available online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.4.pdf (accessed on 15 September 2014).
- Timofeev, R. Classification and Regression Trees (CART) Theory and Applications. Available online: http://edoc.hu-berlin.de/master/timofeev-roman-2004-12-20/PDF/timofeev.pdf (accessed on 20 December 2004).
- Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 2007, 8, 1165–1183. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global precipitation map using satellite-borne microwave radiometers by the GSMAP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Shi, Y.; Choi, S.; Ni, X.; Ganguly, S.; Zhang, G.; Duong, H.; Lefsky, M.; Simard, M.; Saatchi, S.; Lee, S.; et al. Allometric scaling and resource limitations model of tree heights: Part 1. Model optimization and testing over continental USA. Remote Sens. 2013, 5, 284–306. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Hunink, J.E.; Immerzeel, W.W.; Droogers, P. A high-resolution precipitation 2-step mapping procedure (HiP2P): Development and application to a tropical mountainous area. Remote Sens. Environ. 2014, 140, 179–188. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Merlin, O.; Duchemin, B.; Hagolle, O.; Jacob, F.; Coudert, B.; Chehbouni, G.; Dedieu, G.; Garatuza, J.; Kerr, Y. Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sens. Environ. 2010, 114, 2500–2512. [Google Scholar] [CrossRef] [Green Version]
- Grimes, D.I.F.; Diop, M. Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts. Hydrol. Sci. J. 2003, 48, 567–584. [Google Scholar] [CrossRef]
- Merlin, O.; Al Bitar, A.; Walker, J.P.; Kerr, Y. A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors. Remote Sens. Environ. 2009, 113, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Al Bitar, A.; Walker, J.P.; Kerr, Y. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sens. Environ. 2010, 114, 2305–2316. [Google Scholar] [CrossRef] [Green Version]
- Zurita-Milla, R.; Kaiser, G.; Clevers, J.G.P.W.; Schneider, W.; Schaepman, M.E. Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113, 1874–1885. [Google Scholar] [CrossRef]
- Fang, J.; Du, J.; Xu, W.; Shi, P.; Li, M.; Ming, X. Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Adv. Water Resour. 2013, 61, 42–50. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Lovejoy, S.; Pinel, J.; Schertzer, D. The global space-time cascade structure of precipitation: Satellites, gridded gauges and reanalyses. Adv. Water Resour. 2012, 45, 37–50. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Allaire, V. The remarkable wide range spatial scaling of TRMM precipitation. Atmos. Res. 2008, 90, 10–32. [Google Scholar] [CrossRef]
- Kang, B.; Ramírez, J.A. A coupled stochastic space-time intermittent random cascade model for rainfall downscaling. Water Resour. Res. 2010. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote Sens. 2014, 35, 3074–3093. [Google Scholar] [CrossRef]
- Verlinde, J. Trmm Rainfall Data Downscaling in the Pangani Basin in Tanzania. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
- Marquı́nez, J.; Lastra, J.; Garcı́a, P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol. 2003, 270, 1–11. [Google Scholar] [CrossRef]
- Ranhao, S.; Baiping, Z.; Jing, T. A multivariate regression model for predicting precipitation in the Daqing mountains. Mt. Res. Dev. 2008, 28, 318–325. [Google Scholar] [CrossRef]
- Sanchez-Moreno, J.F.; Mannaerts, C.M.; Jetten, V. Influence of topography on rainfall variability in Santiago island, Cape Verde. Int. J. Climatol. 2014, 34, 1081–1097. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest succession with lidar data: An evaluation for the inland northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Thompson, J.R.; Spies, T.A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 2009, 258, 1684–1694. [Google Scholar] [CrossRef]
- Qian, W.; Lin, X. Regional trends in recent precipitation indices in China. Meteorol. Atmos. Phys. 2005, 90, 193–207. [Google Scholar] [CrossRef]
- Basist, A.; Bell, G.D.; Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Climate 1994, 7, 1305–1315. [Google Scholar] [CrossRef]
- Omuto, C.T.; Vargas, R.R.; Alim, M.S.; Paron, P. Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands. J. Arid Environ. 2010, 74, 1552–1563. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The status of the tropical rainfall measuring mission (TRMM) after two years in Orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Grist, J.; Nicholson, S.E.; Mpolokang, A. On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana. J. Arid Environ. 1997, 35, 195–214. [Google Scholar] [CrossRef]
- Iwasaki, H. NDVI prediction over mongolian grassland using GSMAP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Onema, K.J.-M.; Akpofure, T. NDVI-rainfall relationship in the semliki watershed of the equatorial Nile. Phys. Chem. Earth Parts A/B/C 2009, 34, 711–721. [Google Scholar] [CrossRef]
- Li, F.; Zeng, Y.; Li, X.; Zhao, Q.; Wu, B. Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009. Sci. China Earth Sci. 2014, 57, 1800–1806. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: http://cran.r-project.org (accessed on 20 January 2015).
- Freeman, E.; Frescino, T.; Moisen, G. Modelmap: An R Package for Modeling and Map Production Using Random Forest and Stochastic Gradient Boosting. Available online: http://cran.r-project.org/web/packages/ModelMap/vignettes/VModelMap.pdf (accessed on 15 April 2014).
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar]
- Almazroui, M. Calibration of trmm rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Murphy, K.P. Adaptive basis function models. In Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; pp. 544–551. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin, Germany, 2012; pp. 157–175. [Google Scholar]
- Liu, J.Y.; Zhuang, D.F.; Luo, D.; Xiao, X. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. Int. J. Remote Sens. 2003, 24, 2485–2500. [Google Scholar] [CrossRef]
- Zheng, J.; Yin, Y.; Li, B. A new scheme for climate regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. [Google Scholar]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. 2010, 115, 1–17. [Google Scholar]
- Badas, M.G.; Deidda, R.; Piga, E. Orographic influences in rainfall downscaling. Adv. Geosci. 2005, 2, 285–292. [Google Scholar] [CrossRef]
- Reid, I. The influence of slope aspect on precipitation receipt. Weather 1973, 28, 490–494. [Google Scholar] [CrossRef]
- Gires, A.; Tchiguirinskaia, I.; Schertzer, D.; Schellart, A.; Berne, A.; Lovejoy, S. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data. Atmos. Res. 2014, 138, 125–138. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.B.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sens. 2015, 7, 5849-5878. https://doi.org/10.3390/rs70505849
Shi Y, Song L, Xia Z, Lin Y, Myneni RB, Choi S, Wang L, Ni X, Lao C, Yang F. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sensing. 2015; 7(5):5849-5878. https://doi.org/10.3390/rs70505849
Chicago/Turabian StyleShi, Yuli, Lei Song, Zhen Xia, Yurong Lin, Ranga B. Myneni, Sungho Choi, Lin Wang, Xiliang Ni, Cailian Lao, and Fengkai Yang. 2015. "Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach" Remote Sensing 7, no. 5: 5849-5878. https://doi.org/10.3390/rs70505849