Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique
"> Figure 1
<p>Time series of country wide average dekadal rainfall (<b>black line</b>) ± 1 standard deviation (<b>gray shading</b>) 2001–2012 (<b>left</b>) and country wide average of the mean dekadal rainfall (averaged over 2001–2012) ± 1 standard deviation (<b>right</b>) for TAMSAT African Rainfall Climatology and Time-series (TARCAT), Rainfall Estimate (RFE), and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS).</p> "> Figure 2
<p>Topographic map of Mozambique and location within Africa. Circles denote the location of 26 rain gauges, with symbol size indicating the number of complete dekadal observations per station (2001–2012).</p> "> Figure 3
<p>Mean (2001–2012) (<b>a</b>) total annual rainfall, (<b>b</b>) total rainfall over the dry season (April–September) and (<b>c</b>) over the wet season (October–March) for TARCAT, RFE, and CHIRPS.</p> "> Figure 3 Cont.
<p>Mean (2001–2012) (<b>a</b>) total annual rainfall, (<b>b</b>) total rainfall over the dry season (April–September) and (<b>c</b>) over the wet season (October–March) for TARCAT, RFE, and CHIRPS.</p> "> Figure 4
<p>Comparison of rain gauge data with satellite products for all dekads (<span class="html-italic">N</span> = 3085) in the validation dataset. Dashed line indicates 1:1 correspondence and red line gives the linear regression best fit.</p> "> Figure 5
<p>Comparison of cumulative density plots of the satellite products and the rain gauges.</p> "> Figure 6
<p>Pairwise comparison statistics (<span class="html-italic">ME</span>, <span class="html-italic">RMAE</span>, <span class="html-italic">Eff</span> and <span class="html-italic">Bias</span>) of the satellite products compared to the independent validation dataset. Categories based on dekadal rain gauge observations. Grey dashed lines indicate perfect score.</p> "> Figure 7
<p>Pairwise comparison statistics (<span class="html-italic">r</span>, <span class="html-italic">ME</span>, <span class="html-italic">RMAE</span>, <span class="html-italic">Eff</span>, and <span class="html-italic">Bias</span>) of the satellite products compared to the independent validation dataset for each month. The lower right graph shows number of observations in the validation dataset per month.</p> "> Figure 8
<p>Categorical validation statistics (<span class="html-italic">POD</span>, <span class="html-italic">FAR</span>, and <span class="html-italic">ETS</span>) of the satellite products compared to the independent validation dataset for each month.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Satellite Products
- (1)
- TARCAT v2.0 is produced by TAMSAT (the Tropical Applications of Meteorology using SATellite data and ground-based observations) research group of the University of Reading and is based on Meteosat TIR CCD. The algorithm is locally calibrated using historical rain gauge records producing monthly and regional calibration parameters [2,3]. Data are available from 1983 onwards, and dekadal, monthly, and seasonal products at 0.0375° spatial resolution (~4 km) can be accessed in near-real time.
- (2)
- The FEWS NET RFE v2.0 product is implemented by NOAA’s Climate Prediction Center (CPC) and is a blended product based on CCD derived from Meteosat TIR, estimates from SSM/I and AMSU, and daily station rainfall data. Daily rainfall estimates are obtained using a two part merging process [27]: all satellite data are first combined using the maximum likelihood estimation method, then Global Telecommunications Station (GTS) station data are used to remove bias. Data over Africa are available from 2001 onwards and dekadal products at 8 km spatial resolution can be accessed in near-real time.
- (3)
- The CHIRPS dataset, developed by the U.S. Geological Survey (USGS) and the Climate Hazards Group at the University of California, Santa Barbara, is a blended product combining a pentadal precipitation climatology, quasi-global geostationary TIR satellite observations from the CPC and the National Climatic Data Center (NCDC) [28,29], atmospheric model rainfall fields from the NOAA Climate Forecast System version 2 (CFSv2) [30], and in situ precipitation observations. Pentadal rainfall estimates, created from satellite data based on CCD based on regression models calibrated using TRMM, are expressed as percent of normal and multiplied by the corresponding precipitation climatology. Next, stations are blended with this CHIRP data to produce CHIRPS. Quasi-global gridded products are available from 1981 to near-present at 0.05° spatial resolution (~5.3 km) and at pentadal, dekadal, and monthly temporal resolution [14,31]. New products are released approximately mid-month of the month following the observation.
Satellite Product | Temporal Coverage | Spatial Coverage | Spatial Resolution |
---|---|---|---|
TARCAT v2.0 1 | 1983–present | Africa 38° N–36° S, 19° W–52° E | 0.0375° (~4 km) |
FEWS NET RFE v2.0 2 | 2001–present | Africa 43.7° N–42.2° S, 23.5° W–63.4° E | 8 km (~0.075°) |
CHIRPS v1.8 3 | 1981–present | (near) global 50° N–50° S, 180° W–180° E | 0.05° (~5.3 km) |
3.2. Rain Gauge Data
Station | Region 1 | Latitude | Longitude | Elevation (m a.s.l.) | Distance to Coastline (km) | Number of Observations 2 (%) | Number Used in Validation 3 |
---|---|---|---|---|---|---|---|
Angoche | N | 16.23° S | 39.90° E | 61 | 0.1 | 47 | 18 |
Beira/Aeroporto | C | 19.80° S | 34.90° E | 8 | 3.1 | 26 | 1 |
Changalane | S | 26.30° S | 32.18° E | 100 | 52.7 | 49 | 33 |
Chimoio | C | 19.11° S | 33.46° E | 732 | 161.6 | 59 | 4 |
Cuamba | N | 14.82° S | 36.53° E | 606 | 316 | 60 | 28 |
Inhambane | S | 23.87° S | 35.38° E | 14 | 0.1 | 41 | 11 |
Inharrime | S | 24.48° S | 35.02° E | 43 | 17.3 | 65 | 280 |
Lichinga | N | 13.30° S | 35.23° E | 137 | 563.7 | 31 | 10 |
Lumbo | N | 15.03° S | 40.67° E | 10 | 1.4 | 60 | 26 |
Maniquenique | S | 24.73° S | 33.53° E | 13 | 46.3 | 82 | 314 |
Manjacaze | S | 24.72°S | 33.88° E | 65 | 36.2 | 26 | 97 |
Maputo/Observatorio | S | 25.96° S | 32.60° E | 60 | 0.6 | 95 | 410 |
Marrupa | N | 13.23° S | 37.55° E | 838 | 318.9 | 55 | 220 |
Massingir | S | 25.88°S | 32.15° E | 100 | 45.2 | 83 | 320 |
Mocimboa da Praia | N | 11.35°S | 40.37° E | 27 | 0.0 | 77 | 45 |
Montepuez | N | 13.13° S | 39.03° E | 534 | 161.4 | 61 | 54 |
Nampula | N | 15.10° S | 39.28° E | 438 | 134.4 | 29 | 16 |
Panda | S | 24.05° S | 34.72° E | 150 | 69.2 | 57 | 25 |
Pemba | N | 12.98° S | 40.53° E | 50 | 1.4 | 32 | 28 |
Quelimane | C | 17.88° S | 36.88° E | 16 | 18.2 | 30 | 16 |
Sussundenga | C | 19.33° S | 33.23° E | 620 | 171.7 | 81 | 311 |
Tete | C | 16.17° S | 33.47° E | 149 | 417.6 | 50 | 30 |
Umbeluzi | S | 26.05° S | 32.38° E | 12 | 23.1 | 81 | 349 |
Vila-Macia | S | 25.03° S | 33.10° E | 56 | 34.6 | 80 | 305 |
Vilanculo | S | 22.00° S | 35.32° E | 20 | 0.8 | 28 | 116 |
Xai-Xai | S | 25.05° S | 33.63° E | 4 | 10.8 | 55 | 18 |
4. Methods
4.1. Generation of an Independent Validation Dataset
4.2. Validation Statistics
Name | Formula | Perfect Score |
---|---|---|
Pearson correlation coefficient | 1 | |
Mean Error | 0 | |
Relative mean absolute error | 0 | |
Nash-Sutcliffe Efficiency coefficient | 1 | |
Bias | 1 |
Name | Formula | Perfect Score |
---|---|---|
obability of detection | 1 | |
False alarm ratio | 0 | |
Equitable threat score | with hits that occur by chance: | 1 |
Hansen and Kuipers discriminate | 1 | |
Heidke Skill Score | 1 | |
Frequency Bias | 1 |
5. Results and Discussion
5.1. Overall Comparison of Satellite Products
5.2. Overall Validation
Dataset | N | r | ME | RMAE | Eff | Bias | POD | FAR | ETS | HK | HSS | FB |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TARCAT | 3085 | 0.57 | −9.14 | 0.76 | 0.28 | 0.64 | 0.74 | 0.24 | 0.31 | 0.47 | 0.47 | 0.97 |
RFE | 3085 | 0.62 | −7.55 | 0.69 | 0.35 | 0.70 | 0.71 | 0.18 | 0.36 | 0.54 | 0.53 | 0.87 |
CHIRPS | 3085 | 0.64 | −3.21 | 0.71 | 0.41 | 0.87 | 0.89 | 0.29 | 0.32 | 0.47 | 0.48 | 1.26 |
5.3. Results per Rainfall Category
5.4. Temporal Patterns
5.5. Spatial Patterns
Dataset | N | r | ME | RMAE | Eff | Bias | POD | FAR | ETS | HK | HSS | FB |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) | ||||||||||||
TARCAT | 2466 | 0.46 | −7.18 | 0.82 | 0.18 | 0.67 | 0.73 | 0.27 | 0.27 | 0.42 | 0.42 | 1.00 |
RFE | 2466 | 0.55 | −5.85 | 0.74 | 0.22 | 0.73 | 0.70 | 0.20 | 0.33 | 0.50 | 0.50 | 0.87 |
CHIRPS | 2466 | 0.55 | −2.02 | 0.78 | 0.29 | 0.91 | 0.89 | 0.31 | 0.28 | 0.43 | 0.44 | 1.29 |
(b) | ||||||||||||
TARCAT | 619 | 0.72 | −16.97 | 0.62 | 0.39 | 0.57 | 0.78 | 0.11 | 0.48 | 0.66 | 0.65 | 0.87 |
RFE | 619 | 0.75 | −14.34 | 0.58 | 0.49 | 0.64 | 0.77 | 0.09 | 0.49 | 0.67 | 0.65 | 0.84 |
CHIRPS | 619 | 0.75 | −7.92 | 0.55 | 0.55 | 0.80 | 0.92 | 0.20 | 0.47 | 0.62 | 0.63 | 1.15 |
Dataset | N | r | ME | RMAE | Eff | Bias | POD | FAR | ETS | HK | HSS | FB |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) | ||||||||||||
TARCAT | 445 | 0.75 | −7.94 | 0.57 | 0.53 | 0.77 | 0.89 | 0.10 | 0.65 | 0.79 | 0.79 | 1.00 |
RFE | 445 | 0.74 | −5.92 | 0.54 | 0.52 | 0.83 | 0.84 | 0.08 | 0.61 | 0.76 | 0.76 | 0.91 |
CHIRPS | 445 | 0.76 | −1.47 | 0.54 | 0.57 | 0.96 | 0.96 | 0.19 | 0.57 | 0.72 | 0.72 | 1.20 |
(b) | ||||||||||||
TARCAT | 362 | 0.70 | −21.97 | 0.70 | 0.29 | 0.45 | 0.67 | 0.11 | 0.32 | 0.53 | 0.49 | 0.75 |
RFE | 362 | 0.75 | −18.43 | 0.66 | 0.44 | 0.54 | 0.67 | 0.10 | 0.34 | 0.55 | 0.51 | 0.74 |
CHIRPS | 362 | 0.76 | −12.36 | 0.59 | 0.52 | 0.69 | 0.88 | 0.21 | 0.35 | 0.50 | 0.52 | 1.11 |
(c) | ||||||||||||
TARCAT | 2278 | 0.43 | −7.34 | 0.84 | 0.15 | 0.65 | 0.72 | 0.28 | 0.25 | 0.40 | 0.40 | 1.01 |
RFE | 2278 | 0.53 | −6.14 | 0.75 | 0.21 | 0.71 | 0.70 | 0.21 | 0.32 | 0.49 | 0.49 | 0.88 |
CHIRPS | 2278 | 0.53 | −2.09 | 0.79 | 0.27 | 0.90 | 0.88 | 0.32 | 0.27 | 0.42 | 0.43 | 1.30 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Washington, R.; Kay, G.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Todd, M. African climate change: Taking the shorter route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30-year TAMSAT African Rainfall Climatology and Time-series (TARCAT) dataset. J. Geophys. Res.: Atmos. 2014, 199, 10619–10644. [Google Scholar]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl. Meteorol. Climatol. 2014, 53, 2805–2822. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Thorne, V.; Coakeley, P.; Grimes, D.; Dugdale, G. Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int. J. Remote Sens. 2001, 22, 1951–1974. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Arkin, P.; Meisner, B. The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–1984. Mon. Wea. Rev. 1987, 115, 51–74. [Google Scholar]
- Kummerow, C.; Hong, Y.; Olson, W.; Yang, S.; Adler, R.F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.B.; Wilheit, T. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. Climatol. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- Adler, R.F.; Negri, A.J.; Keehn, P.R.; Hakkarinen, I.M. Estimation of rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteorol. Climatol. 1993, 32, 335–356. [Google Scholar] [CrossRef]
- Grimes, D.I.F.; Pardo-Iguzquiza, E.; Bonifacio, R. Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol. 1999, 222, 93–108. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Rudolf, B.; Schneider, U.; Keehn, P. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Clim. 1995, 8, 1284–1295. [Google Scholar] [CrossRef]
- Todd, M.; Kidd, C. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Ocean. Technol. 2001, 18, 742–755. [Google Scholar] [CrossRef]
- Jobard, I.; Chopin, F.; Berges, J.C.; Roca, R. An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens. 2011, 32, 2353–2376. [Google Scholar] [CrossRef]
- Peterson, P.; Funk, C.; Husak, G.; Pedreros, D.; Landsfeld, M.; Verdin, J.; Shukla, S. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation. Available online: http://adsabs.harvard.edu/abs/2013AGUFM.H33E1417P (accessed on 8 August 2014).
- Laurent, H.; Jobard, I.; Toma, A. Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res. 1998, 47–48, 651–670. [Google Scholar] [CrossRef]
- Nicholson, S.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.; Gaye, I.; Kpabeba, G.; Ndiaye, O.; et al. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteorol. 2003, 42, 1337–1354. [Google Scholar]
- Lamptey, B.L. Comparison of gridded multisatellite rainfall estimates with gridded gauge rainfall over West Africa. J. Appl. Meteorol. Climatol. 2008, 47, 185–205. [Google Scholar] [CrossRef]
- Ali, A.; Amani, A.; Diedhiou, A.; Lebel, T. Rainfall estimation in the Sahel. Part II: Evaluation of rain gauge networks in the CILSS countries and objective intercomparison of rainfall products. J. Appl. Meteorol. 2005, 44, 1707–1722. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.I.F.; Allan, R.P.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl. 2013, 20, 308–317. [Google Scholar] [CrossRef]
- Hellmuth, M.E.; Moorhead, A.; Thomson, M.; Williams, J. Flood management in Mozambique. In Climate Risk Management in Africa: Learning from Practice; International Research Institute for Climate and Society: Palisades, NY, USA, 2007; pp. 15–29. [Google Scholar]
- Matyas, C.J. Tropical cyclone formation and motion in the Mozambique Channel. Int. J. Climatol. 2014, in press. [Google Scholar]
- FAO FAOSTAT. Available online: http://faostat3.fao.org/ (accessed on 4 August 2014).
- O’Brien, K.; Vogel, C. Coping with Climate Variability—The Use of Seasonal Climate Forecast in Southern Africa; Grower House: Tucson, AZ, USA, 2003; pp. 135–150. [Google Scholar]
- Manhique, A.J.; Reason, C.J.C.; Rydberg, L.; Fauchereau, N. ENSO and Indian Ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the Southwest Indian Ocean. Int. J. Climatol. 2011, 31, 1–13. [Google Scholar] [CrossRef]
- Brida, A.B.; Owiyo, T.; Sokona, Y. Loss and damage from the double blow of flood and drought in Mozambique. Int. J. Glob. Warm. 2013, 5, 514–531. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef]
- Janowiak, J.; Joyce, R.; Yarosh, Y. A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Am. Meteorol. Soc. 2001, 82, 205–217. [Google Scholar] [CrossRef]
- Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; et al. Globally gridded satellite observations for climate studies. Bull. Am. Meteorol. Soc. 2011, 92, 893–907. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 1, 1–146. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Rowland, J.; Romero, B.; Husak, G.; Michaelsen, J.; Verdin, A.; Pedreros, P. A Quasi-Global Precipitation Time Series for Drought Monitoring. Available online: pubs.usgs.gov/ds/832/ (accessed on 8 August 2014).
- TAMSAT. Available online: www.met.reading.ac.uk/~tamsat (accessed on 18 April 2013).
- USGS FEWS NET Data Portal. Available online: earlywarning.usgs.gov/fews (accessed on 17 April 2013).
- Climate Hazards Group. , CHIRPS ed. Available online: chg.geog.ucsb.edu/data/chirps (accessed on 6 December 2013).
- WWRP/WGNE Joint Working Group on Forecast Verification Research Forecast Verification: Issues, Methods and FAQ. Available online: http://www.cawcr.gov.au/projects/verification/ (accessed on 7 January 2015).
- Tarnavsky, E.; Mulligan, M.; Husak, G. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrol. Sci. J. 2012, 57, 248–264. [Google Scholar] [CrossRef]
- Herman, A.; Kumar, V.B.; Arkin, P.A.; Kousky, J.V. Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens. 1997, 18, 2147–2159. [Google Scholar] [CrossRef]
- De Coning, E. Optimizing satellite-based precipitation estimation for nowcasting of rainfall and flash flood events over the South African domain. Remote Sens. 2013, 5, 5702–5724. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758-1776. https://doi.org/10.3390/rs70201758
Toté C, Patricio D, Boogaard H, Van der Wijngaart R, Tarnavsky E, Funk C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sensing. 2015; 7(2):1758-1776. https://doi.org/10.3390/rs70201758
Chicago/Turabian StyleToté, Carolien, Domingos Patricio, Hendrik Boogaard, Raymond Van der Wijngaart, Elena Tarnavsky, and Chris Funk. 2015. "Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique" Remote Sensing 7, no. 2: 1758-1776. https://doi.org/10.3390/rs70201758
APA StyleToté, C., Patricio, D., Boogaard, H., Van der Wijngaart, R., Tarnavsky, E., & Funk, C. (2015). Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sensing, 7(2), 1758-1776. https://doi.org/10.3390/rs70201758