Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery
">
<p>Experimental field location in Northern Italy and treatment scheme. Light green represents the not fertilized maize plots (N0) and dark green the plots treated with 100 kg N ha<sup>−1</sup> (N1). The irrigation levels are shown as small circles in rainfed plots (IRR0), medium circles in water deficit plots (IRR1) and large circles in full irrigation plots (IRR2).</p> ">
<p>Linear regressions between field data and vegetation indices. (<b>a</b>) %N<sub>a</sub> and MCARI/MTVI2 (<span class="html-italic">R</span><sup>2</sup> = 0.59). (<b>b</b>) W<sub>flight</sub> and MTVI2 (<span class="html-italic">R</span><sup>2</sup> = 0.80).</p> ">
<p>Maps obtained over the maize experimental field. (<b>a</b>) NNI (Nitrogen Nutrition Index) map obtained from remotely sensed data. Classes were defined around the optimal NNI value (NNI = 1). (<b>b</b>) Variable rate N fertilization map (kg N ha<sup>−1</sup>) on the basis of the N<sub>status</sub> value in each pixel. The suggested rate is shown only for pixels belonging to N deficient areas (<span class="html-italic">i.e.</span>, NNI ≤ 0.9).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Field Data
2.3. Nitrogen Nutrition Index
2.4. Hyperspectral Data Acquisition
2.5. Vegetation Index Computation
2.6. NNI and Variable Rate N Fertilization Maps
2.7. Statistical Analyses
3. Results
3.1. Field Data
3.2. Vegetation Indices Regressions
3.3. NNI and Variable Rate N Fertilization Maps
4. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O. Closing the global N(2)O budget: Nitrous oxide emissions through the agricultural nitrogen cycle—OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosyst 1998, 52, 225–248. [Google Scholar]
- Sehy, U.; Ruser, R.; Munch, J.C. Nitrous oxide fluxes from maize fields: Relationship to yield, site-specific fertilization, and soil conditions. Agric. Ecosyst. Environ 2003, 99, 97–111. [Google Scholar]
- Schroder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop. Res 2000, 66, 151–164. [Google Scholar]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter-wheat crops. Ann. Bot 1994, 74, 397–407. [Google Scholar]
- Greenwood, D.J.; Lemaire, G.; Gosse, G.; Cruz, P.; Draycott, A.; Neeteson, J.J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot 1990, 66, 425–436. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. Eur. J. Agron 2008, 28, 614–624. [Google Scholar]
- Lemaire, G.; Gastal, F. Quantifying responses of crop species to N nutrition deficiency: Improving N use efficiency. In Crop Physiology: Applications for Genetic Improvement and Agronomy; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 171–211. [Google Scholar]
- Vouillot, M.O.; Huet, P.; Boissard, P. Early detection of N deficiency in a wheat crop using physiological and radiometric methods. Agronomie 1998, 18, 117–130. [Google Scholar]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron 2008, 29, 184–190. [Google Scholar]
- Houles, V.; Guerif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron 2007, 27, 1–11. [Google Scholar]
- Panigada, C.; Rossini, M.; Busetto, L.; Meroni, M.; Fava, F.; Colombo, R. Chlorophyll concentration mapping with MIVIS data to assess crown discoloration in the Ticino Park oak forest. Int. J. Remote Sens 2010, 31, 3307–3332. [Google Scholar]
- Blackburn, A. Hyperspectral remote sensing of plant pigments. Comp. Biochem. Physiol. A Mol. Integr. Physiol 2006, 143, S147–S147. [Google Scholar]
- Rossini, M.; Panigada, C.; Meroni, M.; Colombo, R. Assessment of oak forest condition based on leaf biochemical variables and chlorophyll fluorescence. Tree Physiol 2006, 26, 1487–1496. [Google Scholar]
- Yu, K.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and hyperspectral indices. Remote Sens 2014, 6, 64–86. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ 2000, 74, 229–239. [Google Scholar]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; van der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ 2004, 91, 354–376. [Google Scholar]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar]
- Evans, J.R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum-aestivum L.). Plant Physiol 1983, 72, 297–302. [Google Scholar]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf 2013, 25, 47–54. [Google Scholar]
- Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Bocchi, S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Res 2009, 111, 119–129. [Google Scholar]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new RapidEye (TM) satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens 2007, 28, 4183–4190. [Google Scholar]
- Zhang, J.H.; Wang, K.; Bailey, J.S.; Wang, R.C. Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere 2006, 16, 108–117. [Google Scholar]
- Graeff, S.; Claupein, W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J. Agron 2003, 19, 611–618. [Google Scholar]
- Yoder, B.J.; Pettigrewcrosby, R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens. Environ 1995, 53, 199–211. [Google Scholar]
- Psomas, A.; Kneubuhler, M.; Huber, S.; Itten, K.; Zimmermann, N.E. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats. Int. J. Remote Sens 2011, 32, 9007–9031. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens 2010, 2, 562–578. [Google Scholar]
- Panigada, C.; Rossini, M.; Meroni, M.; Cilia, C.; Busetto, L.; Amaducci, S.; Boschetti, M.; Cogliati, S.; Picchi, V.; Pinto, F.; et al. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int. J. Appl.Earth Obs. Geoinf 2014, 30, 167–178. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Langeluddecke, P.; Stauss, R.; van den Boom, T.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol 1991, 119, 561–601. [Google Scholar]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res 1995, 46, 467–472. [Google Scholar]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar]
- Webb, N.; Nichol, C.; Wood, J.; Potter, E. User Manual for the SunScan Canopy Analysis System, (2.0 Version); Delta-T Devices Ltd.: Cambridge, UK, 2008; p. 83. [Google Scholar]
- Van Evert, F.K.; Campbell, G.S. CropSyst: A collection of object-oriented simulation models of agricultural systems. Agron. J 1994, 86, 325–331. [Google Scholar]
- Plenet, D.; Lemaire, G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 1999, 216, 65–82. [Google Scholar]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens 1999, 20, 2653–2662. [Google Scholar]
- Baugh, W.M.; Groeneveld, D.P. Empirical proof of the empirical line. Int. J. Remote Sens 2008, 29, 665–672. [Google Scholar]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ 2010, 114, 1987–1997. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ 2002, 81, 416–426. [Google Scholar]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens 2004, 25, 5403–5413. [Google Scholar]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens 2008, 46, 423–437. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retro Gradation of Natural Vegetation; NASA/GSFC Final Report. Greenbelt, MD, USA, 1974; p. 371. Available online: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740004927.pdf (accessed on 19 March 2014).
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ 1996, 55, 95–107. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ 1994, 48, 119–126. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ 2004, 90, 337–352. [Google Scholar]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ 2002, 81, 179–193. [Google Scholar]
- Grenzdorffer, G.J. Investigations on the use of airborne remote sensing for variable rate treatments of fungicides, growth regulators and N-fertilisation. Precision Agric. 2003, 241–246. [Google Scholar]
- Johnson, L.F.; Bosch, D.F.; Williams, D.C.; Lobitz, B.M. Remote sensing of vineyard management zones: Implications for wine quality. Appl. Eng. Agric 2001, 17, 557–560. [Google Scholar]
- Schwab, G.J.; Pena-Yewtukhiw, E.M.; Wendroth, O.; Murdock, L.W.; Stombaugh, T. Wheat yield population response to variable rate N fertilization strategies using active NDVI sensors. Precision Agric 2005, 5, 235–242. [Google Scholar]
- Shaver, T.; Khosla, R.; Westfall, D. Evaluation of two crop canopy sensors for nitrogen recommendations in irrigated maize. J. Plant Nutr 2014, 37, 406–419. [Google Scholar]
- Calderón, R.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agric 2014. [Google Scholar] [CrossRef]
- Quemada, M.; Gabriel, J.L.; Zarco-Tejada, P. Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens 2014, 6, 2940–2962. [Google Scholar]
- Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ 2012, 117, 322–337. [Google Scholar]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens 2009, 47, 722–738. [Google Scholar]
- Baret, F.; Houles, V.; Guerif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot 2007, 58, 869–880. [Google Scholar]
- Rossini, M.; Fava, F.; Cogliati, S.; Meroni, M.; Marchesi, A.; Panigada, C.; Giardino, C.; Busetto, L.; Migliavacca, M.; Amaducci, S.; et al. Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS J. Photogramm. Remote Sens 2013, 86, 168–177. [Google Scholar]
Date | Days after Sowing | Action |
---|---|---|
03/06/2010 | 0 | Maize sowing |
08/06/2010 | 5 | Start emergence |
10/06/2010 | 7 | End emergence |
14/06/2010 | 11 | Weeding (3 L ha−1 Gardoprim) |
24/06/2010 | 21 | N fertilization |
25/06/2010 | 22 | Hoeing |
20/07/2010 | 47 | AISA flight |
13/09/2010 | 102 | Harvest |
Parameter | Leaves Sampled in Each Plot | N° Blocks, N° Plots |
---|---|---|
Cab | 10 | 4, 24 |
ΔF/Fm′ | 15 | 4, 24 |
Ai | 3 | 1, 6 |
Sensor | Spectral Range (nm) | Number of Bands | FWHM (nm) | Spatial Resolution (m) | IFOV (mrad) | Flight Time (UTC) | Height (m) |
---|---|---|---|---|---|---|---|
AISA Eagle | 394–968 | 244 | 3.3 | 1.0 | 0.5 | 12:37 | 2000 |
Category | Index | Formula | Reference |
---|---|---|---|
Nitrogen (N) | DCNI | (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) | [36] |
MCARI/MTVI2 | R700 − R670 − 0.2 × (R700 − R550)] × (R700/R670)/MTVI2 | [21] | |
Foliar pigments | TCARI | 3 × [(R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)] | [37] |
TCARI/OSAVI | TCARI/OSAVI | [37] | |
TCARI/MSAVI | TCARI/MSAVI | [37] | |
MTCI | (R753.75 − R708.75)/(R708.75 − R681.25) | [38] | |
MTCI/MSAVI | MTCI/MSAVI | [39] | |
TCI | 1.2 × (R700 − R550) − 1.5 × (R670 − R550) × (R700/R670)0.5 | [39] | |
TCI/OSAVI | TCI/OSAVI | [39] | |
Greenness | NDVI | (R800 − R670)/(R800 + R670) | [40] |
OSAVI | (R800 − R670)/(R800 + R670 + 0.16) | [41] | |
MSAVI | 0.5 × {2 × R800 + 1 −[(2 × R800 + 1)2 − 8 × (R800 − R670)]0.5} | [42] | |
MTVI2 | 1.5 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)]/{(2 × R800 + 1)2 − [6 × R800 − 5 × (R670)0.5] − 0.5}0.5 | [43] |
Time | Field Data | N0 | N1 | p Value |
---|---|---|---|---|
Contemporary to AISA flight | %Na (%) | 2.07 ± 0.34 | 2.32 ± 0.30 | 0.079 |
NNIfield | 1.03 ± 0.19 | 1.16 ± 0.17 | 0.087 | |
Cab | 49.04 ± 4.29 b | 52.62 ± 3.08 a | 0.028 | |
ΔF/Fm′ | 0.355 ± 0.042 | 0.364 ± 0.033 | 0.535 | |
Ai (μmol CO2 m−2 s−1) | 36.710 ± 5.102 | 37.489 ± 6.407 | 0.877 | |
LAI (m2 m−2) | 2.27 ± 0.72 | 2.60 ± 0.67 | 0.262 | |
Wflight (kg m−2) | 0.41 ± 0.05 | 0.42 ± 0.05 | 0.626 | |
Harvest | Grain (kg m−2) | 0.56 ± 0.17 b | 0.71 ± 0.17 a | 0.043 |
Wharvest (kg m−2) | 1.24 ± 0.24 b | 1.48 ± 0.27 a | 0.031 |
Category | Index | ΔF/Fm′ | %Na | Cab | LAI | Wflight |
---|---|---|---|---|---|---|
Nitrogen (N) | DCNI | 0.19 * | 0.52 (pw) *** | 0.68 *** | 0.22 * | n.s. |
MCARI/MTVI2 | n.s. | 0.59 *** | 0.69 *** | n.s. | n.s. | |
Foliar pigments | TCARI | n.s. | 0.22 * | 0.43 *** | n.s. | n.s. |
TCARI/OSAVI | n.s. | 0.59 (ln) *** | 0.66 *** | 0.21 * | n.s. | |
TCARI/MSAVI | 0.27 ** | 0.54 (ln) *** | 0.58 *** | 0.37 ** | 0.29 ** | |
MTCI | 0.38 ** | 0.38 (pw) ** | 0.48 *** | 0.50 *** | 0.44 *** | |
MTCI/MSAVI | n.s. | 0.33 (pw) ** | 0.56 (pw) *** | n.s. | n.s. | |
TCI | n.s. | n.s. | 0.21 * | 0.23 * | 0.42 *** | |
TCI/OSAVI | n.s. | 0.40 *** | 0.56 *** | n.s. | n.s. | |
Greenness | NDVI | 0.48 *** | n.s. | n.s. | 0.69 *** | 0.77 *** |
OSAVI | 0.48 *** | n.s. | n.s. | 0.69 *** | 0.79 *** | |
MSAVI | 0.47 *** | n.s. | n.s. | 0.67 *** | 0.79 *** | |
MTVI2 | 0.47 *** | n.s. | n.s. | 0.66 *** | 0.80 *** |
NNI Class | Area (m2, % Field) | Description | Nw (g N m−2) | Nstatus (g N m−2) |
---|---|---|---|---|
NNI ≤ 0.7 | 499, 9% | N Deficit | 4.8 ± 0.8 | −3.5 ± 1.7 |
0.7 < NNI ≤ 0.9 | 818, 14% | 6.6 ± 0.7 | −1.7 ± 1.6 | |
0.9 < NNI ≤ 1.1 | 1310, 23% | N optimal | 8.3 ± 0.9 | - |
1.1 < NNI ≤ 1.3 | 1756, 30% | N surplus | 9.9 ± 0.9 | 1.7 ± 1.8 |
NNI > 1.3 | 1370, 24% | 11.9 ± 1.1 | 3.6 ± 1.1 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sens. 2014, 6, 6549-6565. https://doi.org/10.3390/rs6076549
Cilia C, Panigada C, Rossini M, Meroni M, Busetto L, Amaducci S, Boschetti M, Picchi V, Colombo R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sensing. 2014; 6(7):6549-6565. https://doi.org/10.3390/rs6076549
Chicago/Turabian StyleCilia, Chiara, Cinzia Panigada, Micol Rossini, Michele Meroni, Lorenzo Busetto, Stefano Amaducci, Mirco Boschetti, Valentina Picchi, and Roberto Colombo. 2014. "Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery" Remote Sensing 6, no. 7: 6549-6565. https://doi.org/10.3390/rs6076549