Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012
<p>The regional mask around the Arctic provided by the National Snow and Ice Data Center (NSIDC). It includes Arctic Ocean, Barents and Kara Seas, Greenland Sea, Baffin Bay/Davis Strait/Labrador Sea, Gulf of St. Lawrence, Hudson Bay, Canadian Archipelago, Bering Sea, and Sea of Okhotsk.</p> ">
<p>Monthly mean skin temperature (SKT) and sea surface temperature (SST) during 1979–2011. The values for the entire pixels were aggregated.</p> ">
<p>Monthly changes of regression coefficients for skin temperature (SKT) and sea surface temperature (SST). They were calculated from the averages of the normalized variables during 1979–2011.</p> ">
<p>Monthly mean total column liquid water (TCLW) and total column water vapor (TCWV) during 1979–2011. The values for the entire pixels were aggregated.</p> ">
<p>Monthly changes of regression coefficients for the total column liquid water (TCLW) and the total column water vapor (TCWV) during 1979–2011.</p> ">
<p>Satellite-observed monthly sea ice concentration in the Barents and Kara Seas in 2012.</p> ">
<p>Monthly sea ice concentration predicted by the OLS regression models for the Barents and Kara Seas in 2012.</p> ">
<p>Prediction errors of the OLS regression models for the Barents and Kara Seas in 2012.</p> ">
<p>Conceptual framework of the ARIMA models to incorporate temporally varying relationships between sea ice concentration and climate variables.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Satellite and Climate Datasets
2.2. Statistical Models
3. Results and Discussion
3.1. OLS Regression Model Results
3.2. Time-Series Model Results
4. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsYang-Won Lee and Sungwook Hong developed the research plan and supervised the work. Jihye Ahn analyzed data and prepared the manuscript and figures. Hosang Lee and Jaeil Cho contributed to literature review, data acquisition, method selection, and discussions. All authors shared equally in the editing of the manuscript.
References
- Deser, C.; Walsh, J.E.; Timlin, M.S. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Clim 2000, 13, 617–633. [Google Scholar]
- Comiso, J.C. Satellite-observed variability and trend in sea-ice extent, surface temperature, albedo and clouds in the Arctic. Ann. Glaciol 2001, 33, 457–473. [Google Scholar]
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar]
- Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P.; Zwally, H.J.; Comiso, J.C. Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophy. Res 1999, 104, 20837–20856. [Google Scholar]
- Aagaard, K.; Carmack, E.C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophy. Res 1989, 94, 14485–14498. [Google Scholar]
- Overland, J.E.; Wang, M. Large-scale atmospheric circulation changes associated with the recent loss of Arctic sea ice. Tellus 2010, 62, 1–9. [Google Scholar]
- Vinnikov, K.Y.; Robock, A.; Stouffer, R.J.; Walsh, J.E.; Parkinson, C.L.; Cavalieri, D.J.; Mitchell, J.F.B.; Garrett, D.; Zakharov, V.F. Global warming and northern Hemisphere sea ice extent. Science 1999, 286, 1934–1937. [Google Scholar]
- Alexander, M.A.; Bhatt, U.S.; Walsh, J.E.; Timlin, M.S.; Miller, J.S.; Scott, J.D. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim 2004, 17, 890–905. [Google Scholar]
- Comiso, J.C. Sea ice effective microwave emissivities from satellite passive microwave and infrared observations. J. Geophy. Res 1983, 88, 7686–7704. [Google Scholar]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Comiso, J.C.; Zwally, H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophy. Res 1999, 104, 15803–15814. [Google Scholar]
- Markus, T.; Cavalieri, D.J. An enhancement of the NASA team sea ice algorithm. IEEE Trans. Geosci. Remote 2000, 38, 1387–1398. [Google Scholar]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophy. Res 2008, 113, C02S07. [Google Scholar]
- Hong, S.; Shin, I. Global trends of sea ice: Small-scale roughness and refractive index. J. Clim 2010, 23, 4669–4676. [Google Scholar]
- Hong, S.; Shin, I.; Byun, Y.; Seo, H.; Kim, Y. Analysis of sea ice surface properties using ASH and Hong approximations in passive satellite microwave remote sensing. Remote Sens. Lett 2014, 5, 139–147. [Google Scholar]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett 2000, 36, L07503. [Google Scholar]
- Wang, M.; Overland, J.E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett 2009, 36, L07502. [Google Scholar]
- Wang, M.; Overland, J.E. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett 2012, 39, L18501. [Google Scholar]
- Drobot, S.D. Using remote sensing data to develop seasonal outlooks for Arctic regional sea-ice minimum extent. Remote Sens. Environ 2007, 111, 136–147. [Google Scholar]
- Kattsov, V.M.; Ryabinin, V.E.; Overland, J.E.; Serreze, M.C.; Visbeck, M.; Walsh, J.E.; Meier, W.; Zhang, X. Arctic sea-ice change: A grand challenge of climate science. J. Glaciol 2010, 56, 1115–1121. [Google Scholar]
- Drobot, S.; Maslanik, J. A practical method for long-range forecasting of ice severity in the Beaufort Sea. Geophys. Res. Lett 2002, 29, 1–4. [Google Scholar]
- Drobot, S. Long-range statistical forecasting of ice severity in the Beaufort–Chukchi Sea. Weather Forecast 2003, 18, 1161–1176. [Google Scholar]
- Drobot, S.D.; Maslanik, J.A.; Fowler, C. A long-range forecast of Arctic summer sea-ice minimum extent. Geophys. Res. Lett 2006, 33, L10501. [Google Scholar]
- Lindsay, R.W.; Zhang, J.; Schweiger, A.J.; Steele, M.A. Seasonal predictions of ice extent in the Arctic Ocean. J. Geophy. Res 2008, 113, C02023. [Google Scholar]
- Årthun, M.; Eldevik, T.; Smedsrud, L.H.; Skagseth, Ø.; Ingvaldsen, R.B. Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat. J. Clim 2012, 25, 4736–4743. [Google Scholar]
- Pavlova, O.; Pavlov, V.; Gerland, S. The impact of winds and sea surface temperatures on the Barents Sea ice extent: A statistical approach. J. Mar. Syst 2014, 130, 248–255. [Google Scholar]
- Tivy, A.; Howell, S.E.L.; Alt, B.; Yackel, J.J.; Carrieres, T. Origins and levels of seasonal forecast skill for sea ice in Hudson Bay using canonical correlation analysis. J. Clim 2011, 24, 1378–1395. [Google Scholar]
- Chapman, W.L.; Walsh, J.E. Recent variations of sea ice and air temperature in high latitudes. Bull. Amer. Meteor. Soc 1993, 74, 33–47. [Google Scholar]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys 2010, 48, RG4004. [Google Scholar]
- Barnston, A.G. Linear statistical short-term climate predictive skill in the Northern Hemisphere. J. Clim 1994, 7, 1513–1564. [Google Scholar]
- Maslanik, J.; Drobot, S.; Fowler, C.; Emery, W.; Barry, R. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett 2007, 34, L03711. [Google Scholar]
- Zhang, J.; Lindsay, R.; Steele, M.; Schweiger, A. What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett 2008, 35, L11505. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc 2011, 137, 553–597. [Google Scholar]
- Rothrock, D.A.; Yu, Y.; Maykut, G.A. Thinning of the Arctic sea-ice cover. Geophys. Res. Lett 1999, 26, 3469–3472. [Google Scholar]
- Schauer, U.; Loeng, H.; Rudels, B.; Ozhigin, V.K.; Dieck, W. Atlantic water flow through the Barents and Kara Seas. Deep Sea Res. I 2002, 49, 2281–2298. [Google Scholar]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar]
- Sorteberg, A.; Kvingedal, B. Atmospheric forcing on the Barents Sea winter ice extent. J. Clim 2006, 19, 4772–4784. [Google Scholar]
- Geomatics Guidance Note Number 7 Part 2: Coordinate Conversions and Transformations Including Formulas. Available online: http://www.epsg.org/guides/docs/g7-2.pdf (accessed on 11 June 2014).
- Tiao, G.C.; Box, G.E.P. Modeling multiple time series with applications. J. Am. Stat. Assoc 1981, 76, 802–816. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day Inc.: San Francisco, CA, USA, 1976. [Google Scholar]
- Wang, X.; Key, J.R. Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part II: Recent trends. J. Clim 2005, 18, 2575–2593. [Google Scholar]
- Liu, Y.; Key, J.R.; Francis, J.A.; Wang, X. Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Geophys. Res. Lett 2007, 34, L14705. [Google Scholar]
- Schweiger, A.J.; Lindsay, R.W.; Vavrus, S.; Francis, J.A. Relationships between Arctic sea ice and clouds during autumn. J. Clim 2008, 21, 4799–4810. [Google Scholar]
- Liu, Y.; Key, J.R.; Wang, X. Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys. Res. Lett 2009, 36, L20710. [Google Scholar]
- Eastman, R.; Warren, S.G. Arctic cloud changes from surface and satellite observations. J. Clim 2010, 23, 4233–4242. [Google Scholar]
- Liu, Y.; Key, J.R.; Liu, Z.; Wang, X.; Vavrus, S.J. A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett 2012, 39, L05705. [Google Scholar]
- Wang, J.; Mysak, L.A.; Ingram, R.G. Interannual variability of sea-ice cover in Hudson bay, Baffin bay and the Labrador sea. Atmos.-Ocean 1994, 32, 421–447. [Google Scholar]
- Frey, K.E.; Perovich, D.K.; Light, B. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophy. Res. Lett 2011, 38, L22501. [Google Scholar]
- Hong, S. Surface roughness and polarization ratio in microwave remote sensing. Int. J. Remote Sens 2010, 31, 2709–2716. [Google Scholar]
Coefficient | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
β0 | 0.595 | 0.718 | 0.864 | 0.739 | 1.255 | 1.558 | 0.749 | −0.105 | 0.851 | 0.503 | 0.489 | 0.470 |
βSKT | −0.040 | −0.077 | −0.160 | −0.354 | −2.344 | −0.870 | * 0.139 | 1.049 | −2.047 | −0.841 | −0.290 | −0.078 |
βSST | 0.297 | 0.264 | 0.260 | 0.107 | 0.197 | −0.401 | −0.377 | −0.643 | 0.349 | 0.094 | 0.157 | 0.339 |
βTCLW | −0.084 | −0.053 | 0.227 | * 0.493 | 0.854 | −0.520 | −0.080 | −0.163 | * 0.009 | −0.069 | −0.292 | −0.126 |
βTCWV | −0.085 | 0.081 | 0.106 | −0.051 | 0.364 | 0.055 | * 0.032 | 0.265 | 0.628 | 0.512 | 0.339 | −0.124 |
βIMF | 0.364 | 0.363 | 0.382 | 0.292 | −0.512 | −1.216 | −0.555 | −0.402 | −0.296 | −0.095 | 0.210 | 0.348 |
βLCC | 0.052 | 0.049 | 0.059 | 0.024 | −0.041 | −0.191 | −0.066 | 0.018 | 0.013 | 0.065 | 0.039 | 0.085 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.988 | 0.989 | 0.981 | 0.975 | 0.948 | 0.908 | 0.836 | 0.782 | 0.880 | 0.964 | 0.977 | 0.980 | 0.934 |
Pearson R | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SKT | −0.979 | −0.966 | −0.965 | −0.969 | −0.973 | −0.941 | −0.850 | −0.657 | −0.583 | −0.800 | −0.932 | −0.972 |
SST | −0.847 | −0.880 | −0.890 | −0.896 | −0.824 | −0.727 | −0.570 | −0.390 | −0.336 | −0.511 | −0.663 | −0.758 |
TCLW | −0.833 | −0.809 | −0.816 | −0.849 | −0.873 | −0.852 | −0.799 | −0.628 | −0.552 | −0.740 | −0.852 | −0.861 |
TCWV | −0.874 | −0.855 | −0.863 | −0.897 | −0.913 | −0.874 | −0.814 | −0.648 | −0.578 | −0.760 | −0.874 | −0.893 |
IMF | 0.976 | 0.987 | 0.986 | 0.978 | 0.942 | 0.878 | 0.728 | 0.515 | 0.448 | 0.666 | 0.833 | 0.917 |
LCC | 0.834 | 0.851 | 0.864 | 0.888 | 0.844 | 0.753 | 0.621 | 0.442 | 0.385 | 0.590 | 0.731 | 0.789 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | 0.118 | 0.124 | 0.099 | −0.035 | 0.154 | −0.396 | −0.013 | −0.047 | −0.091 | 0.014 | 0.062 | 0.020 | 0.001 |
RMSE | 0.205 | 0.251 | 0.176 | 0.214 | 0.344 | 0.514 | 0.117 | 0.107 | 0.154 | 0.072 | 0.115 | 0.121 | 0.199 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 (2002) | 0.988 | 0.989 | 0.981 | 0.975 | 0.945 | 0.907 | 0.838 | 0.787 | 0.870 | 0.962 | 0.977 | 0.979 | 0.933 |
R2 (1992) | 0.988 | 0.989 | 0.981 | 0.973 | 0.947 | 0.910 | 0.837 | 0.782 | 0.864 | 0.961 | 0.977 | 0.980 | 0.932 |
R2(1982) | 0.988 | 0.989 | 0.981 | 0.975 | 0.947 | 0.906 | 0.832 | 0.776 | 0.866 | 0.960 | 0.977 | 0.980 | 0.931 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias (2002) | −0.040 | −0.070 | −0.032 | 0.154 | 0.049 | 0.144 | 0.027 | 0.055 | −0.061 | −0.016 | 0.048 | −0.043 | 0.018 |
Bias (1992) | 0.017 | 0.008 | 0.091 | −0.165 | 0.045 | 0.209 | 0.077 | −0.017 | 0.132 | −0.087 | 0.007 | −0.058 | 0.022 |
Bias (1982) | −0.036 | 0.051 | 0.025 | 0.034 | −0.099 | 0.359 | −0.053 | −0.043 | −0.063 | −0.026 | 0.014 | −0.015 | 0.012 |
RMSE (2002) | 0.106 | 0.135 | 0.124 | 0.334 | 0.234 | 0.234 | 0.187 | 0.175 | 0.093 | 0.138 | 0.125 | 0.093 | 0.165 |
RMSE (1992) | 0.111 | 0.112 | 0.152 | 0.267 | 0.271 | 0.420 | 0.198 | 0.161 | 0.189 | 0.187 | 0.107 | 0.149 | 0.193 |
RMSE (1982) | 0.124 | 0.111 | 0.098 | 0.125 | 0.249 | 0.727 | 0.172 | 0.176 | 0.116 | 0.086 | 0.148 | 0.130 | 0.188 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 0.100 | 0.159 | 0.082 | 0.093 | 0.144 | 0.182 | 0.166 | 0.094 | 0.100 | 0.170 | 0.090 | 0.098 | 0.123 |
Improvement | 0.105 | 0.092 | 0.094 | 0.121 | 0.200 | 0.332 | −0.049 | 0.013 | 0.054 | −0.098 | 0.025 | 0.023 | 0.076 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ahn, J.; Hong, S.; Cho, J.; Lee, Y.-W.; Lee, H. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012. Remote Sens. 2014, 6, 5520-5540. https://doi.org/10.3390/rs6065520
Ahn J, Hong S, Cho J, Lee Y-W, Lee H. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012. Remote Sensing. 2014; 6(6):5520-5540. https://doi.org/10.3390/rs6065520
Chicago/Turabian StyleAhn, Jihye, Sungwook Hong, Jaeil Cho, Yang-Won Lee, and Hosang Lee. 2014. "Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012" Remote Sensing 6, no. 6: 5520-5540. https://doi.org/10.3390/rs6065520
APA StyleAhn, J., Hong, S., Cho, J., Lee, Y. -W., & Lee, H. (2014). Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012. Remote Sensing, 6(6), 5520-5540. https://doi.org/10.3390/rs6065520