Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters
">
<p>(<b>a</b>) Continuous curvelet transform frequency domain tiling; (<b>b</b>) Discrete curvelet transform frequency domain tiling.</p> ">
<p>(<b>a</b>) Discrete curvelet transform coefficients spatially left to right orientations of 3π/4, π/2, π/4, 0, top to bottom scales 4, 3, 2; (<b>b</b>) Discrete coarse curvelet coefficients in the frequency domain; (<b>c</b>) Discrete coarse curvelet coefficients spatially.</p> ">
<p>(<b>a</b>) Discrete curvelet transform coefficients spatially left to right orientations of 3π/4, π/2, π/4, 0, top to bottom scales 4, 3, 2; (<b>b</b>) Discrete coarse curvelet coefficients in the frequency domain; (<b>c</b>) Discrete coarse curvelet coefficients spatially.</p> ">
<p>(<b>a</b>) Location of Flevoland test site; (<b>b</b>) False coloring of Flevoland data; (<b>c</b>) False coloring of Flevoland ROI data.</p> ">
<p>(<b>a</b>) Flevoland ROI labels; (<b>b</b>) Flevoland ROI class information.</p> ">
<p>Comparison of accuracies of feature extraction methods on (<b>a</b>) <span class="html-italic">k</span>-means; (<b>b</b>) FCM; (<b>c</b>) SRAD and (<b>d</b>) 2D-SOM, with different number of clusters.</p> ">
<p><span class="html-italic">K</span>-means clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p><span class="html-italic">K</span>-means clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The best overall accuracy yielding FCM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The best overall accuracy yielding FCM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The best overall accuracy yielding sFCM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The best overall accuracy yielding sFCM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The 13 × 13 topology 2D-SOM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
<p>The 13 × 13 topology 2D-SOM clustering maps for (<b>a</b>) original data; (<b>b</b>) SRAD; (<b>c</b>) H/A/α; (<b>d</b>) curvelet subband μ, σ features; (<b>e</b>) Label map and (<b>f</b>) class labels.</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Benchmark Feature Sets
2.1.1. Original Data
2.1.2. H/A/α Polarimetric Decomposition
2.1.3. Speckle Reducing Anisotropic Diffusion (SRAD) Filtered Data
2.2. Curvelet Transform Subband Statistical Moments
3. Dataset Description and Clustering Methods
3.1. Dataset Description
3.2. Clustering Methods
3.2.1. K-Means Clustering
3.2.2. Fuzzy C-Means (FCM) Clustering
3.2.3. Spatial Fuzzy C-Means (sFCM) Clustering
3.2.4. Two-Dimensional Self-Organizing Maps (2D-SOM)
4. Experimental Results
4.1. Accuracies and Errors
4.2. Clustering Maps
5. Conclusions
Conflicts of Interest
- Author ContributionsBoth authors contributed extensively to the work presented in this paper.
References
- Yu, P.; Qin, A.K.; Clausi, D.A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Trans. Geosci. Remote Sens 2012, 50, 1302–1317. [Google Scholar]
- Gan, L.; Wu, Y.; Wang, F.; Zhang, P.; Zhang, Q. Unsupervised SAR image segmentation based on Triplet Markov fields with graph cuts. IEEE Geosci. Remote Sens. Lett 2013, 11, 853–857. [Google Scholar]
- Zhang, X.; Jiao, L.; Liu, F.; Bo, L.; Gong, M. Spectral clustering ensemble applied to SAR image segmentation. IEEE Trans. Geosci. Remote Sens 2008, 46, 2126–2136. [Google Scholar]
- Li, Y.; Li, J.; Chapman, M.A. Segmentation of SAR intensity imagery with a Voronoi tessellation, Bayesian inference, and reversible jump MCMC algorithm. IEEE Trans. Geosci. Remote Sens 2010, 48, 1872–1881. [Google Scholar]
- Peng, R.; Wang, X.; Lü, Y.; Wang, S. SAR Imagery Segmentation Based on Integrated Active Contour. Proceedings of the 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, China, 27–29 March 2010; pp. 43–47.
- Dabboor, M.; Collins, M.J.; Karathanassi, V.; Braun, A. An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution. IEEE Trans. Geosci. Remote Sens 2013, 51, 4200–4213. [Google Scholar]
- Yin, J.; Yang, J. Wishart Distribution Based Level Set Method for Polarimetric SAR Image Segmentation. Proceedings of the International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 2999–3002.
- Yan, X.; Jiao, L.; Xu, S. SAR Image Segmentation Based on Gabor Filters of Adaptive Window in Overcomplete Brushlet Domain. Proceedings of the 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR 2009), Xi’an, China, 26–30 October 2009; pp. 660–663.
- Ouchi, K. Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens 2013, 5, 716–807. [Google Scholar]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process 2002, 11, 1260–1270. [Google Scholar]
- Ma, J.; Plonka, G. The curvelet transform. IEEE Signal Process. Mag 2010, 27, 118–133. [Google Scholar]
- Candès, E.; Demanet, L.; Donoho, D.; Ying, L. Fast discrete curvelet transforms. Multiscale Model. Simul 2005, 5, 861–899. [Google Scholar]
- Gomez, F.; Romero, E. Rotation invariant texture characterization using a curvelet based descriptor. Pattern Recognit. Lett 2011, 32, 2178–2186. [Google Scholar]
- Uslu, E.; Albayrak, S. Curvelet-based synthetic aperture radar image classification. IEEE Geosci. Remote Sens. Lett 2014, 11, 1071–1075. [Google Scholar]
- Amasyal, M.F.; Albayrak, S. Fuzzy C-Means Clustering on Medical Diagnostic Systems. Proceedings of the 12th International Turkish Symposium on Artificial Intelligence and Neural Networks (TAINN 2003), Canakkale, Turkey, 2–4 July 2003.
- Chuang, K.-S.; Tzeng, H.-L.; Chen, S.; Wu, J.; Chen, T.-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph 2006, 30, 9–15. [Google Scholar]
- Li, B.N.; Chui, C.K.; Chang, S.; Ong, S.H. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med 2011, 41, 1–10. [Google Scholar]
- Yin, H. The Self-Organizing Maps: Background, Theories, Extensions and Applications. In Computational Intelligence: A Compendium; Springer: Berlin, Germany, 2008; pp. 715–762. [Google Scholar]
- Kohonen, T. Self-Organizing Maps, 3rd ed; Springer: Berlin, Germany, 2001; Volume 30. [Google Scholar]
Feature Extraction | Clustering Accuracy (%) |
---|---|
ORG | 38.06 |
SRAD | 65.41 |
H/A/α | 44.68 |
μ, σ | 44.50 |
Feature Extraction | |||||
---|---|---|---|---|---|
m Values | ORG | SRAD | H/A/α | μ, σ | |
Overall accuracies for different m values (%) | 1.1 | 37.86 | 66.42 | 44.58 | 48.66 |
1.2 | 38.02 | 66.64 | 44.52 | 48.72 | |
1.4 | 38.15 | 63.05 | 44.40 | 49.33 | |
2 | 38.68 | 59.17 | 43.23 | 48.42 | |
3 | 40.00 | 51.92 | 39.63 | 43.25 | |
4 | 39.99 | 50.11 | 41.04 | 40.72 | |
8 | 42.57 | 52.14 | 43.65 | 38.53 | |
16 | 47.58 | 65.64 | 46.16 | 47.95 | |
32 | 43.99 | 65.17 | 42.06 | 47.49 | |
64 | 40.85 | 62.52 | 41.53 | 48.63 |
Feature Extraction | Clustering Accuracy (%) | p | q | w |
---|---|---|---|---|
ORG | 47.49 | 0 | 1 | 11 |
SRAD | 85.11 | 4 | 2 | 21 |
H/A/α | 67.29 | 0 | 2 | 21 |
μ, σ | 61.98 | 0 | 8 | 21 |
Feature Extraction | Accuracies (%) for SOM Size | |||
---|---|---|---|---|
7 × 7 SOM | 9 × 9 SOM | 11 × 11 SOM | 13 × 13 SOM | |
ORG | 61.36 (4) | 62.13 (6) | 63.15 (6) | 64.28 (7) |
SRAD | 89.29 (9) | 90.09 (9) | 91.59 (9) | 91.90 (9) |
H/A/α | 60.90 (8) | 61.89 (8) | 62.82 (9) | 63.39 (9) |
μ, σ | 86.24 (9) | 89.68 (9) | 93.00 (9) | 94.94 (9) |
Actual Labels | SRAD Cluster Labels | Total Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
1 | 567 | 19 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 592 |
2 | 21 | 4773 | 24 | 2 | 3 | 100 | 194 | 0 | 0 | 5117 |
3 | 1 | 16 | 3107 | 3 | 5 | 13 | 25 | 41 | 5 | 3216 |
4 | 1 | 3 | 13 | 653 | 7 | 13 | 0 | 0 | 0 | 690 |
5 | 2 | 10 | 18 | 9 | 1010 | 114 | 6 | 3 | 1 | 1173 |
6 | 5 | 105 | 15 | 28 | 63 | 3902 | 17 | 2 | 3 | 4140 |
7 | 0 | 670 | 35 | 0 | 0 | 19 | 825 | 0 | 0 | 1549 |
8 | 0 | 4 | 151 | 1 | 0 | 6 | 0 | 5786 | 38 | 5986 |
9 | 0 | 12 | 2 | 0 | 0 | 0 | 0 | 2 | 426 | 442 |
Actual Labels | μ, σ Cluster Labels | Total Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
1 | 506 | 65 | 0 | 0 | 0 | 12 | 9 | 0 | 0 | 592 |
2 | 31 | 4850 | 41 | 0 | 0 | 1 | 109 | 51 | 34 | 5117 |
3 | 0 | 54 | 3098 | 6 | 0 | 1 | 54 | 3 | 0 | 3216 |
4 | 0 | 0 | 0 | 690 | 0 | 0 | 0 | 0 | 0 | 690 |
5 | 0 | 0 | 22 | 1 | 1091 | 33 | 0 | 26 | 0 | 1173 |
6 | 0 | 16 | 16 | 30 | 0 | 4078 | 0 | 0 | 0 | 4140 |
7 | 0 | 284 | 128 | 0 | 0 | 64 | 1059 | 14 | 0 | 1549 |
8 | 0 | 16 | 20 | 0 | 3 | 0 | 13 | 5934 | 0 | 5986 |
9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 440 | 442 |
Features | ORG | SRAD | H/A/α | μ, σ | |
---|---|---|---|---|---|
Clustering Methods | K-Means | 0.2521 | 0.5329 | 0.3686 | 0.3614 |
FCM | 0.3237 | 0.6106 | 0.3135 | 0.4111 | |
sFCM | 0.3491 | 0.8350 | 0.6223 | 0.5492 |
IN c, xj = 1…n |
ci ← randomly selected number of c samples from xj |
repeat |
uij ← calculate membership for each sample xj with Equation (18) |
ci ← calculate new cluster centers for each cluster with Equation (19) |
until |Jcurrent − Jprevious| < threshold |
OUT ci=1…c |
IN c, xj=1…n, m |
uij ← randomly initialize fuzzy membership values |
repeat |
ci ← calculate new cluster centers for each cluster with Equation (21) |
uij ← calculate fuzzy membership foreach sample xj with Equation (22) |
until |Jcurrent − Jprevious| < threshold |
OUT ci=1…c |
IN c, xj=1−n, m, NB, p, q |
uij ← randomly initialize fuzzy membership values |
repeat |
ci ← calculate new cluster centers foreach cluster with Equation (21) |
hij ← calculate spatial fuzzy membership foreach sample xj with Equation (23) |
← calculate fuzzy membership foreach sample xj with Equation (24) |
uij ← calculate feature space fuzzy membership foreach sample xj with Equation (22) |
until |Jcurrent − Jprevious| < threshold |
OUT ci=1−c |
IN M, X, σ, α |
wM×n ← randomly initialize weight values |
repeat |
foreach xi |
vi(t) ← calculate winning neuron with Equation (25) |
Update winning neuron and its neighboring weights with Equation (27) |
end for each |
until (∑Δwk(t) < threshold) or (max_number_of_iterations) is reached |
OUT wM×n |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Uslu, E.; Albayrak, S. Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters. Remote Sens. 2014, 6, 5497-5519. https://doi.org/10.3390/rs6065497
Uslu E, Albayrak S. Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters. Remote Sensing. 2014; 6(6):5497-5519. https://doi.org/10.3390/rs6065497
Chicago/Turabian StyleUslu, Erkan, and Songul Albayrak. 2014. "Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters" Remote Sensing 6, no. 6: 5497-5519. https://doi.org/10.3390/rs6065497
APA StyleUslu, E., & Albayrak, S. (2014). Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters. Remote Sensing, 6(6), 5497-5519. https://doi.org/10.3390/rs6065497