Ensemble Empirical Mode Decomposition Parameters Optimization for Spectral Distance Measurement in Hyperspectral Remote Sensing Data
<p>The procedure for Empirical Mode Decomposition (EMD). (<b>a</b>) Main flow; (<b>b</b>) Calculation of IMF; (<b>c</b>) The sifting process.</p> ">
<p>The procedure for Ensemble Empirical Mode Decomposition (EEMD) processing.</p> ">
<p>Concept of Spectral Angle Mapper (SAM).</p> ">
<p>The Graphics Processing Unit (GPU) architecture of EEMD.</p> ">
<p>Spectral reflectance results for five minerals.</p> ">
<p>The spectra of Intrinsic Mode Functions (IMFs) by EMD for Actinolite.</p> ">
<p>Spectra of accumulations of IMFs from 1–6.</p> ">
<p>Kappa value <span class="html-italic">vs.</span> N and Nstd for IMF1 with SNR = 30.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Ensemble Empirical Mode Decomposition (EEMD)
- The numbers of extrema and zero-crossings of IMFs must be either equal or differ at most by one.
- At any point, the mean of local maxima and local minima envelopes is zero.
- The signal has at least two extrema; one is the maximum and the other the minimum.
- The time-period scale is defined by the time lapse between two extrema.
- If the data have no extrema, only the inflection point is recorded, and the extrema can then be estimated by differentiation.
- (1)
- Identify all extrema of x(t)
- (2)
- Interpolate between minima (resp. maxima) with “envelopes” emin(t) (resp. emax(t))
- (3)
- Compute the mean envelope , where k is the iteration number.
- (4)
- Extract the detail hj = x(t)–mk(t).
- (5)
- Repeat (1)–(4) until hj(t) meets the definition of IMF, and IMF converges.
- (6)
- Repeat (1)–(5) to generate a residual rn(t), rn(t) = x(t)–hn(t)
2.2. Spectral Angle Mapper
2.3. Parallel Computing Implementations
3. Experimental Results
3.1. SAM for Original Data
3.2. SAM for EMD Decomposed Data
3.3. SAM for EEMD Decomposed Data
3.4. EEMD Speedup by GPU
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Carvalho, O.A., Jr.; Guimaraes, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A.T. A new approach to change vector analysis using distance and similarity measures. Remote Sens 2011, 3, 2473–2493. [Google Scholar]
- Kamal, M.; Phinn, S. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sens 2011, 3, 2222–2242. [Google Scholar]
- Keshava, N. Distance metrics and band selection in hyperspectral processing with application to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens 2004, 42, 1552–1565. [Google Scholar]
- Hecker, C.; van der Meijde, M.; van der Werff, H.; van der Meer, F.D. Assessing the influence of reference spectra on synthetic SAM classification results. IEEE Trans. Geosci. Remote Sens 2008, 46, 4162–4172. [Google Scholar]
- Van der Linden, S.; Waske, B.; Hostert, P. Towards an Optimized Use of the Specral Angle Space. Proceedings of the 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007; pp. 1–5.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 1998, 454, 903–999. [Google Scholar]
- Flandrin, P.; Rilling, G.; Goncalvés, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett 2004, 11, 112–114. [Google Scholar]
- Rilling, G.; Flandrin, P.; Goncalves, P. On Empirical Mode Decomposition and its Algorithm. Proceedings of the 6th IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP’03), Grado, Italy, 8–11 June 2003; pp. 8–11.
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal 2009. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Chen, X. The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal 2009, 1, 339–372. [Google Scholar]
- Li, X.; Li, X.B.; Huang, Z.Y. Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation. IEEE Trans. Rev. Sci. Instrum 2009, 80. [Google Scholar] [CrossRef]
- Linderhed, A. Image empirical mode decomposition: A new tool for image processing. Adv. Adapt. Data Anal 2009, 1, 265–294. [Google Scholar]
- Demir, B.; Ertürk, S. Empirical mode decomposition of hyperspectral images for support vector machine classification. IEEE Trans. Geosci. Remote Sens 2010, 48, 4071–4084. [Google Scholar]
- Zhang, M.; Shen, Y. Ensemble empirical mode decomposition for hyperspectral image classification. Adv. Adapt. Data Anal 2012, 4. [Google Scholar] [CrossRef]
- Erturk, A.; Gullu, M.K.; Erturk, S. Hyperspectral image classification using empirical mode decomposition with spectral gradient enhancement. IEEE Trans. Geosci. Remote Sens 2013, 51, 2787–2798. [Google Scholar]
- Xu, Y.P.; Hu, K.N.; Han, J.X. Classification based on the EMD of hyperspectral curve. Proc. SPIE 2007, 6795. [Google Scholar] [CrossRef]
- Chang, L.W.; Lo, M.T.; Anssari, N.; Hsu, K.H.; Huang, N.E.; Hwu, W.M.W. Paralle implementation of multi-dimensional ensemble empirical mode decomposition. IEEE Trans. Acoust. Speech Signal Process. (ICASSP) 2011. [Google Scholar] [CrossRef]
- Chen, D.; Li, D.; Xiong, M.; Bao, H.; Li, X. GPU-aided ensemble empirical mode decomposition for EEG analysis during anesthesia. IEEE Trans. Inf. Technol. Biomed 2010, 14, 1417–1427. [Google Scholar]
- Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. A 2004, 460, 1597–1611. [Google Scholar]
- Carletta, J. Assessing agreement on classification tasks: The kappa statistic. J. Comput. Linguist 1996, 22, 249–254. [Google Scholar]
Actinolite | Andradite | Goethite | Hematite | Illite | |
---|---|---|---|---|---|
Actinolite | 75.8% | 0% | 0% | 0% | 0% |
Andradite | 0% | 80% | 25% | 29.4% | 20% |
Goethite | 0% | 0% | 75% | 0% | 0% |
Hematite | 20% | 20% | 0% | 70.2% | 0% |
Illite | 4.2% | 0% | 0% | 0.4% | 80% |
Kappa value | 0.7025 |
Actinolite | Andradite | Goethite | Hematite | Illite | Kappa | |
---|---|---|---|---|---|---|
IMF 1 | 100% | 60% | 75% | 58.3% | 80% | 0.65640 |
IMF 2 | 100% | 60% | 25% | 50% | 80% | 0.52632 |
IMF 3 | 28.6% | 80% | 0% | 75% | 60% | 0.46137 |
IMF 4 | 0% | 40% | 0% | 75% | 40% | 0.34278 |
IMF 5 | 100% | 20% | 0% | 25% | 0% | 0.02623 |
IMF 6 | 0% | 60% | 0% | 16.7% | 0% | 0.00794 |
IMF 7 | 33.3% | 40% | 0% | 25% | 80% | 0.22132 |
IMF 1 | 1 | 10 | 25 | 50 | 80 | 100 | 500 | 1000 |
---|---|---|---|---|---|---|---|---|
0.1 | 0.1795 | 0.1184 | 0.1190 | 0.1185 | 0.1101 | 0.1116 | 0.1094 | 0.1098 |
0.2 | 0.1259 | 0.1291 | 0.1369 | 0.1161 | 0.1129 | 0.1103 | 0.1105 | 0.1109 |
0.3 | 0.0918 | 0.1240 | 0.1265 | 0.1225 | 0.1198 | 0.1154 | 0.1160 | 0.1154 |
0.4 | 0.0405 | 0.1064 | 0.1159 | 0.1194 | 0.1146 | 0.1114 | 0.1138 | 0.1130 |
0.5 | 0.0850 | 0.1028 | 0.1091 | 0.1189 | 0.1100 | 0.1119 | 0.1121 | 0.1133 |
0.6 | 0.0760 | 0.0984 | 0.1095 | 0.1145 | 0.1101 | 0.1109 | 0.1120 | 0.1134 |
0.7 | 0.0519 | 0.1248 | 0.0988 | 0.1056 | 0.1058 | 0.1108 | 0.1124 | 0.1134 |
0.8 | 0.0458 | 0.0526 | 0.0881 | 0.1011 | 0.1018 | 0.1088 | 0.1110 | 0.1148 |
0.9 | 0.0259 | 0.0445 | 0.0563 | 0.0830 | 0.0936 | 0.0985 | 0.1059 | 0.1074 |
Nstd | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|---|
N = 100 | ||||||||||
IMF 1 | SNR = 20 | 0.1051 | 0.1128 | 0.1131 | 0.1151 | 0.1146 | 0.1114 | 0.1110 | 0.1096 | 0.1098 |
SNR = 30 | 0.1116 | 0.1103 | 0.1154 | 0.1114 | 0.1119 | 0.1109 | 0.1108 | 0.1088 | 0.0985 | |
SNR = 40 | 0.5613 | 0.5068 | 0.4920 | 0.4710 | 0.4570 | 0.4398 | 0.4284 | 0.4149 | 0.4034 | |
IMF 2 | SNR = 20 | 0.1935 | 0.2066 | 0.2183 | 0.2240 | 0.2236 | 0.2199 | 0.2180 | 0.2214 | 0.2145 |
SNR = 30 | 0.1588 | 0.1540 | 0.1486 | 0.1421 | 0.1370 | 0.1351 | 0.1294 | 0.1271 | 0.1293 | |
SNR = 40 | 0.7173 | 0.6500 | 0.5960 | 0.5678 | 0.5336 | 0.5158 | 0.4974 | 0.4799 | 0.4515 | |
IMF 3 | SNR = 20 | 0.3125 | 0.3678 | 0.3850 | 0.3924 | 0.4005 | 0.3953 | 0.3848 | 0.3740 | 0.3764 |
SNR = 30 | 0.3511 | 0.3501 | 0.3381 | 0.3359 | 0.3414 | 0.3363 | 0.3371 | 0.3336 | 0.3343 | |
SNR = 40 | 0.8385 | 0.8631 | 0.8505 | 0.8253 | 0.8034 | 0.7885 | 0.7708 | 0.7596 | 0.7511 | |
IMF 4 | SNR = 20 | 0.4814 | 0.5785 | 0.6063 | 0.6280 | 0.6235 | 0.6151 | 0.5966 | 0.5949 | 0.5863 |
SNR = 30 | 0.5061 | 0.4936 | 0.4670 | 0.4749 | 0.4513 | 0.4430 | 0.4291 | 0.4293 | 0.4109 | |
SNR = 40 | 0.8791 | 0.9771 | 0.9531 | 0.9535 | 0.9220 | 0.9191 | 0.9035 | 0.8945 | 0.8688 | |
IMF 5 | SNR = 20 | 0.3475 | 0.5211 | 0.6199 | 0.6321 | 0.6619 | 0.6733 | 0.6636 | 0.6755 | 0.6873 |
SNR = 30 | 0.5855 | 0.6571 | 0.6681 | 0.6628 | 0.6655 | 0.6600 | 0.6530 | 0.6496 | 0.6473 | |
SNR = 40 | 0.6133 | 0.7764 | 0.7995 | 0.8221 | 0.8414 | 0.8653 | 0.8696 | 0.8800 | 0.8865 | |
IMF 6 | SNR = 20 | 0.3429 | 0.3730 | 0.5574 | 0.5650 | 0.5858 | 0.6030 | 0.6039 | 0.5963 | 0.5866 |
SNR = 30 | 0.5319 | 0.5486 | 0.7200 | 0.7258 | 0.7438 | 0.7719 | 0.7508 | 0.7521 | 0.7618 | |
SNR = 40 | 0.3021 | 0.4833 | 0.5025 | 0.5571 | 0.5835 | 0.6221 | 0.6366 | 0.6514 | 0.6636 | |
IMF 7 | SNR = 20 | 0.3730 | 0.4540 | 0.4581 | 0.4643 | 0.4554 | 0.4296 | 0.4196 | 0.4291 | 0.3998 |
SNR = 30 | 0.4858 | 0.6079 | 0.6413 | 0.6675 | 0.6866 | 0.6948 | 0.6731 | 0.6783 | 0.6276 | |
SNR = 40 | 0.4964 | 0.5014 | 0.4991 | 0.5225 | 0.5339 | 0.5316 | 0.5186 | 0.5125 | 0.4715 |
Nstd | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|---|
N = 100 | ||||||||||
IMF 1–2 | SNR = 20 | 0.2243 | 0.2315 | 0.2375 | 0.2348 | 0.2343 | 0.2328 | 0.2321 | 0.2281 | 0.2231 |
SNR = 30 | 0.4661 | 0.4526 | 0.4386 | 0.4285 | 0.4199 | 0.4140 | 0.4075 | 0.4009 | 0.3951 | |
SNR = 40 | 0.7448 | 0.6868 | 0.6369 | 0.6208 | 0.5811 | 0.5608 | 0.5436 | 0.5276 | 0.5276 | |
IMF 1–3 | SNR = 20 | 0.4011 | 0.4111 | 0.4095 | 0.4016 | 0.3965 | 0.3921 | 0.3863 | 0.3808 | 0.3818 |
SNR = 30 | 0.7179 | 0.7220 | 0.7056 | 0.6946 | 0.6815 | 0.6701 | 0.6599 | 0.6466 | 0.6375 | |
SNR = 40 | 0.8910 | 0.8726 | 0.8526 | 0.8335 | 0.8154 | 0.8000 | 0.7841 | 0.7668 | 0.7556 | |
IMF 1–4 | SNR = 20 | 0.6004 | 0.6374 | 0.6433 | 0.6419 | 0.6380 | 0.6266 | 0.6143 | 0.6085 | 0.5965 |
SNR = 30 | 0.8473 | 0.8438 | 0.8468 | 0.8558 | 0.8481 | 0.8410 | 0.8308 | 0.8256 | 0.8174 | |
SNR = 40 | 0.9855 | 0.9909 | 0.9833 | 0.9844 | 0.9749 | 0.9634 | 0.9510 | 0.9401 | 0.9224 | |
IMF 1–5 | SNR = 20 | 0.7158 | 0.7911 | 0.7994 | 0.7988 | 0.8051 | 0.8038 | 0.7975 | 0.7939 | 0.7923 |
SNR = 30 | 0.9201 | 0.9343 | 0.9374 | 0.9440 | 0.9455 | 0.9460 | 0.9404 | 0.9465 | 0.9439 | |
SNR = 40 | 0.9378 | 0.9430 | 0.9645 | 0.9754 | 0.9830 | 0.9864 | 0.9909 | 0.9924 | 0.9945 | |
IMF 1–6 | SNR = 20 | 0.8164 | 0.8130 | 0.8020 | 0.8108 | 0.8074 | 0.8116 | 0.8015 | 0.8028 | 0.8041 |
SNR = 30 | 0.8984 | 0.8805 | 0.8539 | 0.8738 | 0.8636 | 0.8716 | 0.8601 | 0.8789 | 0.8760 | |
SNR = 40 | 0.9083 | 0.8868 | 0.8473 | 0.8869 | 0.8724 | 0.8845 | 0.9909 | 0.8875 | 0.8873 |
PC | Cluster | |||
---|---|---|---|---|
CPU | CPU | GPU | ||
Operating System | Windows 7 SP1 | Debian GNU/Linux 6.0.2 | ||
Platform | Intel i5-2400 | Intel Xeon 5504 (Quad-core) | Tesla c1060 (240 cores) | |
Clock rate | 3.1 GHz | 2.0 GHz | 1.3 GHz | |
Memory | DDR3 4G × 2 | DDR3 2G × 6 | DDR3 4G | |
Language | Matlab 2008a | VS2008-C/C++ | Linux-C | Linux-C&CUDA |
N | Matlab 2008a | VS2008-C/C++ | Linux-C | Linux-C&CUDA |
---|---|---|---|---|
500 | 34,127 | 6240 | 423.03 | 207.59 |
1000 | 66,574 | 13,073 | 846.19 | 283.22 |
1500 | 99,650 | 19,188 | 1268.53 | 345.29 |
2000 | 132,624 | 24,757 | 1692.13 | 408.37 |
2500 | 165,575 | 30,966 | 2112.62 | 561.02 |
3000 | 199,109 | 37,097 | 2548.61 | 684.97 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ren, H.; Wang, Y.-L.; Huang, M.-Y.; Chang, Y.-L.; Kao, H.-M. Ensemble Empirical Mode Decomposition Parameters Optimization for Spectral Distance Measurement in Hyperspectral Remote Sensing Data. Remote Sens. 2014, 6, 2069-2083. https://doi.org/10.3390/rs6032069
Ren H, Wang Y-L, Huang M-Y, Chang Y-L, Kao H-M. Ensemble Empirical Mode Decomposition Parameters Optimization for Spectral Distance Measurement in Hyperspectral Remote Sensing Data. Remote Sensing. 2014; 6(3):2069-2083. https://doi.org/10.3390/rs6032069
Chicago/Turabian StyleRen, Hsuan, Yung-Ling Wang, Min-Yu Huang, Yang-Lang Chang, and Hung-Ming Kao. 2014. "Ensemble Empirical Mode Decomposition Parameters Optimization for Spectral Distance Measurement in Hyperspectral Remote Sensing Data" Remote Sensing 6, no. 3: 2069-2083. https://doi.org/10.3390/rs6032069
APA StyleRen, H., Wang, Y.-L., Huang, M.-Y., Chang, Y.-L., & Kao, H.-M. (2014). Ensemble Empirical Mode Decomposition Parameters Optimization for Spectral Distance Measurement in Hyperspectral Remote Sensing Data. Remote Sensing, 6(3), 2069-2083. https://doi.org/10.3390/rs6032069