A Comparative Study of Three Land Surface Broadband Emissivity Datasets from Satellite Data
<p>Comparison between NAALSED BBE and GLASS BBE for summer season. (<b>a</b>) GLASS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between GLASS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Comparison between NAALSED BBE and GLASS BBE for winter season. (<b>a</b>) GLASS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between GLASS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Comparison between NAALSED BBE and GLASS BBE for winter season. (<b>a</b>) GLASS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between GLASS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Comparison between NAALSED BBE and UWIREMIS BBE for the summer season. (<b>a</b>) UWIREMIS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between UWIREMIS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Comparison between NAALSED BBE and UWIREMIS BBE for the summer season. (<b>a</b>) UWIREMIS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between UWIREMIS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Comparison between NAALSED BBE and UWIREMIS BBE for the winter season. (<b>a</b>) UWIREMIS BBE; (<b>b</b>) NAALSED BBE; (<b>c</b>) the difference between UWIREMIS BBE and NAALSED BBE; (<b>d</b>) the histogram of the difference.</p> ">
<p>Global distribution of six land cover types composited from 2003 MODIS land cover product.</p> ">
<p>Geographical distribution of global UWIREMIS BBE and GLASS BBE. (<b>a</b>) UWIREMIS January BBE; (<b>b</b>) GLASS January BBE; (<b>c</b>) UWIREMIS April BBE; (<b>d</b>) GLASS April BBE; (<b>e</b>) UWIREMIS July BBE; (<b>f</b>) GLASS July BBE; (<b>g</b>) UWIREMIS October BBE; (<b>h</b>) GLASS October BBE.</p> ">
<p>Monthly mean BBE of barren calculated from UWIREMIS BBE (<b>a</b>) and GLASS BBE (<b>b</b>) for global, North Hemisphere (NH) and South Hemisphere (SH), respectively.</p> ">
<p>Monthly mean BBE of five land cover types calculated from UWIREMIS BBE and GLASS BBE for global, North Hemisphere (NH) and South Hemisphere (SH), respectively. (<b>a</b>) GLASS Forest BBE; (<b>b</b>) UWIREMIS Forest BBE; (<b>c</b>) MODIS Forest NDVI; (<b>d</b>) GLASS Grass BBE; (<b>e</b>) UWIREMIS Grass BBE; (<b>f</b>) MODIS Grass NDVI; (<b>g</b>) GLASS Crop BBE; (<b>h</b>) UWIREMIS Crop BBE; (<b>i</b>) MODIS Crop NDVI; (<b>j</b>) GLASS Shrub BBE; (<b>k</b>) UWIREMIS Shrub BBE; (<b>l</b>) MODIS Shrub NDVI; (<b>m</b>) GLASS Savanna BBE; (<b>n</b>) UWIREMIS Savanna BBE; (<b>o</b>) MODIS Savanna NDVI.</p> ">
<p>Monthly mean BBE of five land cover types calculated from UWIREMIS BBE and GLASS BBE for global, North Hemisphere (NH) and South Hemisphere (SH), respectively. (<b>a</b>) GLASS Forest BBE; (<b>b</b>) UWIREMIS Forest BBE; (<b>c</b>) MODIS Forest NDVI; (<b>d</b>) GLASS Grass BBE; (<b>e</b>) UWIREMIS Grass BBE; (<b>f</b>) MODIS Grass NDVI; (<b>g</b>) GLASS Crop BBE; (<b>h</b>) UWIREMIS Crop BBE; (<b>i</b>) MODIS Crop NDVI; (<b>j</b>) GLASS Shrub BBE; (<b>k</b>) UWIREMIS Shrub BBE; (<b>l</b>) MODIS Shrub NDVI; (<b>m</b>) GLASS Savanna BBE; (<b>n</b>) UWIREMIS Savanna BBE; (<b>o</b>) MODIS Savanna NDVI.</p> ">
<p>The calculated parameters for a homogeneous deciduous needle leaf forest site using coregistered MODIS and ASTER data from 2000 through 2010. (<b>a</b>) NDVI; (<b>b</b>) MODIS spectral albedo; (<b>c</b>) ASTER BBE; (<b>d</b>) GLASS BBE.</p> ">
Abstract
:1. Introduction
2. Data
2.1. GLASS BBE
2.2. NAALSED Emissivity
2.3. UWIREMIS Emissivity
3. Methodology
3.1. Broadband Emissivity Calculation
3.2. Compare to NAALSED BBE
3.3. Comparison between UWIREMIS BBE and GLASS BBE
4. Results and Discussion
4.1. Compare to NAALSED BBE
4.2. Comparison between UWIREMIS BBE and GLASS BBE
4.2.1. Spatial Distribution Pattern
4.2.2. Seasonal Pattern
4.2.3. Time Series
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review of estimation of land surface radiation and energy budgets from ground measurements, remote sensing and model simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 225–240. [Google Scholar]
- Zhou, L.; Goldberg, M.; Barnet, C.; Cheng, Z.; Sun, F.; Wolf, W.; King, T.; Liu, X.; Sun, H.; Divakarla, M. Regression of surface spectral emissivity from hyperspectral instruments. IEEE Trans. Geosci. Remote Sens 2008, 46, 328–333. [Google Scholar]
- Vogel, R.L.; Liu, Q.-H.; Han, Y.; Wend, F.-Z. Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J. Geophys. Res 2011, 116. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land Processes in climate models. Remote Sens. Environ 1995, 51, 27–38. [Google Scholar]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R satellite land surface temperature algorithm using SURFRAD ground measurements and statistical estimates of error properties. IEEE Trans. Geosci. Remote Sens 2012, 50, 704–713. [Google Scholar]
- Cheng, J.; Liang, S.; Liu, Q.; Li, X. Temperature and emissivity separation from ground-based MIR hyperspectral data. IEEE Trans. Geosci. Remote Sens 2011, 49, 1473–1484. [Google Scholar]
- Xue, Y.; Lawrence, S.P.; Llewellyn-Jones, D.T.; Mutlow, C.T. On the Earth’s surface energy exchange determination from ERS satellite ATSR data. Part I: Long-wave radiation. Int. J. Remote Sens 1998, 19, 2561–2583. [Google Scholar]
- Zhou, J.; Chen, Y.; Zhang, X.; Zhan, W. Modelling the diurnal variations of urban heat islands with multi-source satellite data. Int. J. Remote Sens 2013, 34, 7568–7588. [Google Scholar]
- Bonan, G.B.; Oleson, K.W.; Vertenstein, M.; Levis, S.; Zeng, X.; Dai, Y.; Dickinson, R.E.; Yang, Z. The land surface climatology of the community land model coupled to the NCAR community climate model. J. Clim 2002, 15, 3123–3149. [Google Scholar]
- Jin, M.; Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Clim 2006, 19, 2867–2881. [Google Scholar]
- Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci 1986, 43, 505–531. [Google Scholar]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Jin, M.; Ogawa, K.; Yu, H.; Schmugge, T. A sensitivity study of climate and energy blance simulations with use of satellite-based emissivity data over northern africa and the arabian peninsula. J. Geophys. Res 2003, 108. [Google Scholar] [CrossRef]
- Wilber, A.C.; Kratz, D.P.; Gupta, S.K. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation; NASA/TP-1999-209362; NASA Langley Research Center: Hampton, VA, USA, 1999; Available online: http://techreports.larc.nasa.gov/1trs (accessed on 13 December 2013).
- Ogawa, K.; Schmugge, T. Mapping surface broadband emissivity of the sahara desert using ASTER and MODIS data. Earth Interact 2004, 8, 1–14. [Google Scholar]
- Ogawa, K.; Schmugge, T.; Rokugawa, S. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing. IEEE Trans. Geosci. Remote Sens 2008, 46, 334–343. [Google Scholar]
- Peres, L.F.; DaCamara, C.C. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens 2005, 43, 1834–1844. [Google Scholar]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett 2013, 10, 401–405. [Google Scholar]
- Liang, S. Quantitative Remote Sensing of Land Surface; John Wiley and Sons, Inc: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hulley, G.C.; Hook, S.J. The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0. Remote Sens. Environ 2009, 113, 1967–1975. [Google Scholar]
- Seemann, S.W.; Borbas, E.E.; knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrieval from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol 2008, 47, 108–123. [Google Scholar]
- Capelle, V.; Chedin, A.; Pequignot, E.; Schlussel, P.; Newman, S.M.; Scott, S.A. Infrared continental surface emissivity spectra and skin temperature retrieved from IASI observations over the tropics. J. Appl. Meteorol. Climatol 2012, 51, 1164–1179. [Google Scholar]
- Zhou, D.K.; Larar, A.M.; Liu, X.; Smith, W.L.; Strow, L.L.; Yang, P.; Schlussel, P.; Calbet, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens 2011, 49, 1227–1290. [Google Scholar]
- Li, J.; Li, J.-L. Derivation of a global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements. Geophys. Res. Lett 2008, 35, L15807. [Google Scholar] [CrossRef]
- susskind, J.; Blaisdell, J. Improved surface parameter retrievals using AIRS/AMSU data. Proc. SPIE 2008, 6966. [Google Scholar] [CrossRef]
- Aumann, H.; Chanhine, M.T.; Gautier, C. AIRS/AMSU/HSB on the AQUA mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens 2003, 41, 253–264. [Google Scholar]
- Trigo, I.F.; Peres, L.F.; DaCamara, C.C.; Freitas, S.C. Thermal land surface emissivity retrieved from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens 2008, 46, 307–315. [Google Scholar]
- Cheng, J.; Liang, S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res.: Atmos 2013. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S. Estimating global land surface broadband thermal-infrared emissivity from the advanced very high resolution radiometer optical data. Int. J. Digit. Earth 2013. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013. [Google Scholar] [CrossRef]
- Dong, L.X.; Hu, J.Y.; Tang, S.H.; Min, M. Field validation of GLASS land surface broadband emissivity database using pseudo-invariant sand dunes sites in northern China. Int. J. Digit. Earth 2013. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global LAnd Surface Satellite (GLASS) Products: Algorithm, Validation and Analysis; Springer: Berlin, Germany, 2013. [Google Scholar]
- Ren, H.; Liang, S.; Yan, G.; Cheng, J. Empirical algorithms to map global broadband emissivities over vegetated surfaces. IEEE Trans. Geosci. Remote Sens 2013, 51, 2619–2631. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ 2009, 113, 711–715. [Google Scholar]
- Cheng, J.; Liang, S.; Weng, F.; Wang, J.; Li, X. Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 323–336. [Google Scholar]
- Hulley, G.C.; Hook, S.J. A new methodology for cloud detection and calssification with ASTER data. Geophys. Res. Lett 2008, 35. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens. Environ 2009, 113, 2224–2233. [Google Scholar]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge Unviersity Press: New York, NY, USA, 1993. [Google Scholar]
- Cheng, J.; Liang, S. Effects of thermal-infrared emissivity directionality on surface broadband emissivity and longwave net radiation estimation. IEEE Geosci. Remote Sens. Lett 2014, 11, 499–503. [Google Scholar]
- Du, Y.; Liu, Q.-H.; Chen, L.-F.; Liu, Q.; Yu, T. Modeling directional brightness temperature of the winter wheat canopy at the ear stage. IEEE Trans. Geosci. Remote Sens 2007, 45, 3721–3739. [Google Scholar]
- Gillespie, A.R.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.J.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens 1998, 36, 1113–1126. [Google Scholar]
- Gillespie, A.R.; Abbott, E.A.; Gilson, L.; Hulley, G.; Jimenez-Munoz, J.-C.; Sobrino, J.A. Residual errors in ASTER temperature and emissivity products AST08 and AST05. Remote Sens. Environ 2011, 115, 3681–3694. [Google Scholar]
- Sabol, D.E., Jr.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field validation of the ASTER Temperature-Emissivity Separation Algorithm. Remote Sens. Environ 2009, 113, 2328–2344. [Google Scholar]
- Mira, M.; Schmugge, T.J.; Valor, E.; Caselles, V.; Coll, C. Analysis of ASTER emissivity product over an arid area in southern New Mexico, USA. IEEE Trans. Geosci. Remote Sens 2011, 49, 1316–1324. [Google Scholar]
- Matsunaga, T.; Sawabe, Y.; Rokugawa, S.; Tonooka, H.; Moriyama, M. Early evaluation of ASTER emissivity products and its application to environmental and geologic studies. Proc. SPIE 2001, 4486. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens. Environ 2006, 103, 474–487. [Google Scholar]
- Gustafson, W.T.; Gillespie, A.R.; Yamada, G.J. Revisions to the ASTER Temperature/Emissivity Separation Algorithm. In Second Recent Advances in Quantitative Remote Sensing; Sobrino, J.A., Ed.; Universitat de Valencia: Valencia, Spain, 2006; pp. 770–775. [Google Scholar]
- Griend, A.A.V.D.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens 1993, 14, 1119–1131. [Google Scholar]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ 1996, 57, 167–184. [Google Scholar]
- Snyder, W.C.; Wan, Z. BRDF modles to predict spectral reflectance and emissivity in the thermal infrared. IEEE Trans. Geosci. Remote Sens 1998, 36, 214–225. [Google Scholar]
- Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products usning long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ 2009, 113, 1556–1565. [Google Scholar]
- French, A.N.; Schmugge, T.J.; Ritchie, J.C.; Hsu, A.; Jacob, F.; Ogawa, K. Detecting land cover change at the Jornada Experimental Rang, New Mexico with ASTER emissivities. Remote Sens. Environ 2008, 112, 1730–1748. [Google Scholar]
- French, A.N.; Inamdar, A. Land cover characterization for hydrological modelling using thermal infrared emissivities. Int. J. Remote Sens 2010, 31, 3867–3883. [Google Scholar]
Data Set | Forest | Grass | Crop | Shrub | Savanna | Barren |
---|---|---|---|---|---|---|
Summer Season | ||||||
NAALSED | 0.975±0.003 | 0.966±0.007 | 0.972±0.005 | 0.952±0.010 | 0.972±0.005 | 0.938±0.017 |
GLASS | 0. 971±0.003 | 0. 965±0.005 | 0. 967±0.004 | 0. 959±0.007 | 0. 968±0.002 | 0. 951±0.017 |
UWIREMIS | 0.965±0.008 | 0.962±0.007 | 0.967±0.006 | 0.951±0.010 | 0.959±0.006 | 0.940±0.015 |
Winter Season | ||||||
NAALSED | 0.977±0.003 | 0.974±0.005 | 0.974±0.005 | 0.960±0.010 | 0.974±0.002 | 0.939±0.021 |
GLASS | 0.977±0.006 | 0.969±0.009 | 0.969±0.005 | 0.957±0.003 | 0.966±0.002 | 0.946±0.018 |
UWIREMIS | 0.963±0.007 | 0.964±0.006 | 0.966±0.006 | 0.956±0.008 | 0.968±0.005 | 0.941±0.015 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cheng, J.; Liang, S.; Yao, Y.; Ren, B.; Shi, L.; Liu, H. A Comparative Study of Three Land Surface Broadband Emissivity Datasets from Satellite Data. Remote Sens. 2014, 6, 111-134. https://doi.org/10.3390/rs6010111
Cheng J, Liang S, Yao Y, Ren B, Shi L, Liu H. A Comparative Study of Three Land Surface Broadband Emissivity Datasets from Satellite Data. Remote Sensing. 2014; 6(1):111-134. https://doi.org/10.3390/rs6010111
Chicago/Turabian StyleCheng, Jie, Shunlin Liang, Yunjun Yao, Baiyang Ren, Linpeng Shi, and Hao Liu. 2014. "A Comparative Study of Three Land Surface Broadband Emissivity Datasets from Satellite Data" Remote Sensing 6, no. 1: 111-134. https://doi.org/10.3390/rs6010111
APA StyleCheng, J., Liang, S., Yao, Y., Ren, B., Shi, L., & Liu, H. (2014). A Comparative Study of Three Land Surface Broadband Emissivity Datasets from Satellite Data. Remote Sensing, 6(1), 111-134. https://doi.org/10.3390/rs6010111