An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model
<p>Land cover map of three study areas.</p> ">
<p>Near-infrared (NIR)-red-green composite of Landsat Enhanced Thematic Mapper Plus (ETM+) (upper row) and MODIS (lower row) surface reflectance images. The labels (<b>a–c</b>) represent the monthly changes over a forested area (study area 1, Canada), the annual changes of a heterogeneous region (study area 2, China) and the changes of a heterogeneous region (study area 3, Canada) over several years, respectively.</p> ">
<p>Comparison of the observed image, the simulated image ((<b>a</b>) monthly changes over a forest area (study area 1, Canada); (<b>b</b>) annual changes of heterogeneous region (study area 2, China); (<b>c</b>) changes of heterogeneous region (study area 3, Canada) over several years) by ESTARFM and the modified enhanced spatial and temporal adaptive reflectance fusion model (mESTARFM) at three study areas.</p> ">
<p>Scatter plot of observed and simulated reflectance by mESTARFM and ESTARFM for the NIR, red and green band (<b>a–f</b>, monthly changes over a forested area).</p> ">
<p>Scatter plot of observed and simulated reflectance by mESTARFM and ESTARFM for the NIR, red and green band (<b>a–f</b>, monthly changes over a forested area).</p> ">
<p>Scatter plot of the observed and simulated reflectance by mESTARFM and ESTARFM for the NIR, red and green band (<b>a–f</b>, annual changes around the Qianyanzhou (QYZ) flux site).</p> ">
<p>Scatter plot of the observed and simulated reflectance by mESTARFM and ESTARFM for the NIR, red and green band (<b>a–f</b>, changes over several years around the EOBS flux site).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Areas
2.2. Satellite Data and Preprocessing
2.3. Land Cover Data
2.4. Implementation of mESATRFM
2.5. Accuracy Assessment
3. Results
4. Discussions
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ 2009, 113, 1988–1999. [Google Scholar]
- Pohl, C.; van Genderen, J.L. Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens 1998, 19, 823–854. [Google Scholar]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens 2008, 46, 1822–1835. [Google Scholar]
- Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sens 2012, 4, 1856–1886. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.L.; Chen, J.; Gao, F.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ 2010, 114, 2610–2623. [Google Scholar]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ 2011, 115, 1053–1064. [Google Scholar]
- Metwalli, M.R.; Nasr, A.H.; Allah, O.S.F.; El-Rabaie, S.; Abd El-Samie, F.E. Satellite image fusion based on principal component analysis and high-pass filtering. J. Opt. Soc. Am. A 2010, 27, 1385–1394. [Google Scholar]
- Naidu, V.P.S.; Raol, J.R. Pixel-level image fusion using wavelets and principal component analysis. Def. Sci. J 2008, 58, 338–352. [Google Scholar]
- Riasati, V.R.; Zhou, H. Reduced data projection slice image fusion using principal component analysis. Proc. SPIE 2005, 5813, 1–15. [Google Scholar]
- Choi, M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans. Geosci. Remote Sens 2006, 44, 1672–1682. [Google Scholar]
- Tu, T.-M.; Su, S.-C.; Shyu, H.-C.; Huang, P.S. Efficient intensity-hue-saturation-based image fusion with saturation compensation. Opt. Eng 2001, 40, 720–728. [Google Scholar]
- Zhang, Y. Understanding image fusion. Photogramm. Eng. Remote Sens 2004, 70, 657–661. [Google Scholar]
- Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens 1999, 37, 1204–1211. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ 2009, 113, 1613–1627. [Google Scholar]
- Watts, J.D.; Powell, S.L.; Lawrence, R.L.; Hilker, T. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens. Environ 2011, 115, 66–75. [Google Scholar]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett 2013, 10, 1–5. [Google Scholar]
- Singh, D. Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 59–69. [Google Scholar]
- Chen, B.; Ge, Q.; Fu, D.; Yu, G.; Sun, X.; Wang, S.; Wang, H. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeosciences 2010, 7, 2943–2958. [Google Scholar]
- Shen, H.; Wu, P.; Liu, Y.; Ai, T.; Wang, Y.; Liu, X. A spatial and temporal reflectance fusion model considering sensor observation differences. Int. J. Remote Sens 2013, 34, 4367–4383. [Google Scholar]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ 2013, 133, 193–209. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr 1970, 46, 234–240. [Google Scholar]
- Liu, Y.F.; Yu, G.R.; Wen, X.F.; Wang, Y.H.; Song, X.; Li, J.; Sun, X.M.; Yang, F.T.; Chen, Y.R.; Liu, Q.J. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D 2006, 49, 99–109. [Google Scholar]
- Huang, M.; Ji, J.J.; Li, K.R.; Liu, Y.F.; Yang, F.T.; Tao, B. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China. Tellus B 2007, 59, 439–448. [Google Scholar]
- Richardson, A.D.; Hollinger, D.Y.; Burba, G.G.; Davis, K.J.; Flanagan, L.B.; Katul, G.G.; Munger, J.W.; Ricciuto, D.M.; Stoy, P.C.; Suyker, A.E.; Verma, S.B.; Wofsy, S.C. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric. For. Meteorol 2006, 136, 1–18. [Google Scholar]
- Yuan, F.; Arain, M.A.; Barr, A.G.; Black, T.A.; BOURQUE, C.P.A.; Coursolle, C.; Margolis, H.A.; McCAUGHEY, J.H.; Wofsy, S.C. Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect. Glob. Change Biol 2008, 14, 1765–1784. [Google Scholar]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett 2006, 3, 68–72. [Google Scholar]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens 2006, 72, 1179–1188. [Google Scholar]
- Irish, R.R. Landsat 7 automatic cloud cover assessment. Proc. SPIE 2000, 4049, 348–355. [Google Scholar]
- Wulder, M.A.; Dechka, J.A.; Gillis, M.A.; Luther, J.E.; Hall, R.J.; Beaudoin, A. Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. For. Chron 2003, 79, 1075–1083. [Google Scholar]
- Wulder, M.A.; White, J.C.; Magnussen, S.; McDonald, S. Validation of a large area land cover product using purpose-acquired airborne video. Remote Sens. Environ 2007, 106, 480–491. [Google Scholar]
- Yunqiang, Z.; Runda, L.; Min, F.; Song, J. Research on Earth System Scientific Data Sharing Platform Based on SOA. Proceedings of WRI World Congress on Software Engineering, 2009, WCSE’09, Los Angeles, CA, USA, 19–21 May 2009; 1, pp. 77–83.
Study Area | Landsat | MODIS | ||
---|---|---|---|---|
Date | Path/Row | Date | Tile | |
Monthly changes over a forested area | 24 May 2001 | 37/22 | 17–24 May 2001 | h11v03 |
11 July 2001 | 4–11 July 2001 | |||
12 August 2001 | 5–12 August 2001 | |||
Annual changes of heterogeneous region | 19 October 2001 | 122/41 | 16–23 October 2001 | h28v06 |
13 April 2002 | 7–14 April 2002 | |||
7 November 2002 | 1–8 November 2002 | |||
Changes of heterogeneous region over several years | 13 May 2001 | 16/25 | 9–16 May 2001 | h13v04 |
8 May 2005 | 1–8 May 2005 | |||
8 September 2009 | 6–13 September 2009 |
ESTARFM | mESTARFM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Study Area | Band | R2 | RMSE | MAE | p-value | R2 | RMSE | MAE | p-value | Window Size (m) |
Monthly changes over a forested area | Green | 0.7835 | 0.0046 | −0.0003 | <0.0001 | 0.8010 | 0.0045 | 0.0005 | <0.0001 | 1,500 |
Red | 0.8632 | 0.0050 | 0.0031 | <0.0001 | 0.8671 | 0.0050 | 0.0031 | <0.0001 | 3,000 | |
NIR | 0.9185 | 0.0165 | −0.0004 | <0.0001 | 0.9478 | 0.0131 | 0.0042 | <0.0001 | 3,000 | |
Annual changes of heterogeneous region | Green | 0.6649 | 0.0121 | 0.0025 | <0.0001 | 0.7175 | 0.0112 | 0.0029 | <0.0001 | 1,500 |
Red | 0.6360 | 0.0206 | 0.0082 | <0.0001 | 0.6785 | 0.0197 | 0.0089 | <0.0001 | 1,500 | |
NIR | 0.4564 | 0.0291 | 0.0036 | <0.0001 | 0.4647 | 0.0284 | 0.0035 | <0.0001 | 1,500 | |
Changes of heterogeneous region over several years | Green | 0.1763 | 0.0205 | −0.0060 | <0.0001 | 0.2347 | 0.0159 | −0.0050 | <0.0001 | 3,000 |
Red | 0.2540 | 0.1591 | 0.1513 | <0.0001 | 0.2968 | 0.1591 | 0.1513 | <0.0001 | 3,000 | |
NIR | 0.7388 | 0.0363 | 0.0106 | <0.0001 | 0.8067 | 0.0307 | 0.0134 | <0.0001 | 3,000 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fu, D.; Chen, B.; Wang, J.; Zhu, X.; Hilker, T. An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sens. 2013, 5, 6346-6360. https://doi.org/10.3390/rs5126346
Fu D, Chen B, Wang J, Zhu X, Hilker T. An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sensing. 2013; 5(12):6346-6360. https://doi.org/10.3390/rs5126346
Chicago/Turabian StyleFu, Dongjie, Baozhang Chen, Juan Wang, Xiaolin Zhu, and Thomas Hilker. 2013. "An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model" Remote Sensing 5, no. 12: 6346-6360. https://doi.org/10.3390/rs5126346
APA StyleFu, D., Chen, B., Wang, J., Zhu, X., & Hilker, T. (2013). An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sensing, 5(12), 6346-6360. https://doi.org/10.3390/rs5126346