The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification
<p>Australian forest structural definitions [<a href="#b5-remotesensing-05-02838" class="html-bibr">5</a>].</p> ">
<p>Victorian Interim Biogeographic Regionalisation for Australia (IBRA Bioregions) and aerial photographic interpretation (API) land cover maps.</p> ">
<p>Implemented Random Forests model forest probability map (<b>a</b>) inset forest probability map (0–100); (<b>b</b>) final forest classification, based on a binary threshold.</p> ">
<p>Random Forests predictor variable importance measures. (<b>a</b>) Mean decrease accuracy for forest prediction; (<b>b</b>) mean decrease accuracy for non-forest prediction; (<b>c</b>) mean decrease accuracy for forest and non-forest prediction; and (<b>d</b>) mean decrease Gini for forest and non-forest prediction.</p> ">
<p>Random Forests predictor variable importance measures. (<b>a</b>) Mean decrease accuracy for forest prediction; (<b>b</b>) mean decrease accuracy for non-forest prediction; (<b>c</b>) mean decrease accuracy for forest and non-forest prediction; and (<b>d</b>) mean decrease Gini for forest and non-forest prediction.</p> ">
Abstract
:1. Introduction
2. Random Forests
3. Open-Source Software
3.1. Geographic Resources Analysis Support System (GRASS)
3.2. R and Python
4. Methods
4.1. Study Area
4.2. Training Data
4.3. Predictor Variables
4.4. Data Collation
4.5. Random Forest Model
4.5.1. Construction and Evaluation
4.5.2. Implementation
5. Results and Discussion
5.1. Classification Accuracy
5.2. Variable Importance
6. Conclusions
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References and Notes
- McRoberts, R.E. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens. Environ 2010, 114, 1017–1025. [Google Scholar]
- Howell, C.I.; Wilson, A.D.; Davey, S.M.; Eddington, M.M. Sustainable forest management reporting in Australia. Ecol. Indic 2008, 8, 123–130. [Google Scholar]
- Deppe, F. Forest area estimation using sample surveys and Landsat MSS and TM data. Photogramm. Eng. Remote Sensing 1998, 64, 285–292. [Google Scholar]
- Department of Agriculture Fisheries and Forestry. Australia’s Forest at a Glance; Department of Agriculture Fisheries and Forestry: Canberra, Australia, 2012. [Google Scholar]
- Australian Surveying and Land Information Group. Atlas of Australian Resources (Vol. 6, Vegetation); Australian Surveying and Land Information Group: Canberra, Australia, 1990. [Google Scholar]
- Jenkins, R.B.; Coops, N.C. Landscape controls on structural variation in Eucalypt vegetation communities: Woronora Plateau, Australia. Aust. Geogr 2011, 42, 1–17. [Google Scholar]
- Jacobs, M. Growth Habits of the Eucalypts; Forestry and Timber Bureau: Canberra, 1955. [Google Scholar]
- Behn, G.; McKinnell, F.; Caccetta, P. Mapping forest cover, Kimberley Region of Western Australia. Australian Forestry 2001, 64, 80–87. [Google Scholar]
- Bhandari, S. Monitoring Forest Dynamics using Time Series of Satellite Image Data in Queensland, Australia. 2011. [Google Scholar]
- Jupp, D.L.B.; Walker, J. Detecting Structural and Growth Changes in Woodlands and Forests: The Challenge for Remote Sensing and the Role of Geometric-Optical Modelling. In The Use of Remote Sensing in the Modeling of Forest Productivity; Shimoda, H., Gholz, H.L., Nakane, K., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 75–108. [Google Scholar]
- Montreal Process Implementation Group for Australia. Australia’s State of the Forests Report 2008; Montreal Process Implementation Group for Australia: Canberra, ACT, Australia, 2008. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Clerici, N.; Weissteiner, C.J.; Gerard, F. Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sens 2012, 4, 1781–1803. [Google Scholar]
- Main-Knorn, M.; Moisen, G.G.; Healey, S.P.; Keeton, W.S.; Freeman, E.A.; Hostert, P. Evaluating the remote sensing and inventory-based estimation of biomass in the western carpathians. Remote Sens 2011, 3, 1427–1446. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm 2012, 67, 93–104. [Google Scholar]
- Austin, M.P.; Meyers, J.a. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecol. Manag 1996, 85, 95–106. [Google Scholar]
- Khalyani, A.H.; Falkowski, M.J.; Mayer, A.L. Classification of Landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests. Int. J. Remote Sens 2012, 33, 6956–6974. [Google Scholar]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar]
- Joy, S.M.; Reich, R.M.; Reynolds, R.T. A non-parametric supervised classification of vegetation types on the Kaibab National Forest using decision trees. Int. J. Remote Sens 2003, 24, 1835–1852. [Google Scholar]
- Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens.Environ 2008, 112, 2145–2159. [Google Scholar]
- Fahsi, A.; Tsegaye, T.; Tadesse, W.; Coleman, T. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy. Forest Ecol. Manag 2000, 128, 57–64. [Google Scholar]
- Gislason, P.; Benediktsson, J.; Sveinsson, J. Random Forests for land cover classification. Pattern Recognit. Lett 2006, 27, 294–300. [Google Scholar]
- Green, G.M.; Sussman, R. Deforestation history of the eastern rainforests of Madagascar from satellite images. Science 1990, 248, 212–215. [Google Scholar]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Progr. Phys. Geogr 2005, 29, 1–26. [Google Scholar]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens 2005, 26, 2509–2525. [Google Scholar]
- Tucker, C.J.; Townshend, J.R. Strategies for tropical forest deforestation assessment using satellite data. Int. J. Remote Sens 2000, 21, 1461–1472. [Google Scholar]
- Rogan, J. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ 2002, 80, 143–156. [Google Scholar]
- Maselli, F. Use of MODIS NDVI data to improve forest-area estimation. Int. J. Remote Sens 2011, 32, 6379–6393. [Google Scholar]
- Wulder, M.a; White, J.C.; Gillis, M.D.; Walsworth, N.; Hansen, M.C.; Potapov, P. Multiscale satellite and spatial information and analysis framework in support of a large-area forest monitoring and inventory update. Environ. Monit. Assess 2010, 170, 417–433. [Google Scholar]
- Culbert, P.; Pidgeon, A.; St-Louis, V. The impact of phenological variation on texture measures of remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2009, 2, 299–309. [Google Scholar]
- Coburn, C.a.; Roberts, a. C. B. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens 2004, 25, 4287–4308. [Google Scholar]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from worldview-2 satellite data. Remote Sens 2012, 4, 810–829. [Google Scholar]
- Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ 2006, 102, 390–401. [Google Scholar]
- Rodríguez-Galiano, V.F.; Abarca-Hernández, F.; Ghimire, B.; Chica-Olmo, M.; Atkinson, P.M.; Jeganathan, C. Incorporating Spatial Variability Measures in Land-cover Classification using Random Forest. Procedia Environ. Sci 2011, 3, 44–49. [Google Scholar] [Green Version]
- Guisan, A.; Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model 2000, 135, 147–186. [Google Scholar]
- Beaumont, L.; Hughes, L.; Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model 2005, 186, 250–269. [Google Scholar]
- Franklin, J. Predictive vegetation mapping: Geographic modelling of biospatial patterns in relation to environmental gradients. Progr. Phys. Geogr 1995, 19, 474–499. [Google Scholar]
- Random Forest. Available online: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed Febuary 9, 2012).
- Calle, M.L.; Urrea, V. Letter to the editor: Stability of Random Forest importance measures. Briefings Bioinf 2011, 12, 86–9. [Google Scholar]
- The GNUManifesto. Available online: http://www.gnu.org/gnu/manifesto.html (accessed on 10 February 2011).
- Rocchini, D.; Delucchi, L.; Bacaro, G.; Cavallini, P.; Feilhauer, H.; Foody, G.M.; He, K.S.; Nagendra, H.; Porta, C.; Ricotta, C.; et al. Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecol. Inform. 2012, in press.. [Google Scholar]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Version 6.4; Open Source Geospatial Foundation Project. 2012. Available online: http://grass.osgeo.org (accessed on 17 April 2013).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. Available online: http://www.R-project.org (accessed on 17 April 2013).
- Bivand, R. Using the R-GRASS Interface: Current Status. OSGeo Journal 2007, 1, 36–38. [Google Scholar]
- The Python Language Reference. Available online: http://docs.python.org/release/3.2/reference/index.html (accessed on 27 May 2013).
- Viridans Ecosystems and Vegetation. Available online: http://www.viridans.com/ECOVEG/ (accessed on 27 May 2013).
- Department of Sustainability and Environment Victorian Forest Monitoring Program. Available onine: http://www.dse.vic.gov.au/forests/managing-our-forests/forest-sustainability/victorian-forest-monitoring-program (accessed on 10 December 2012).
- Mellor, A.; Haywood, A. Remote Sensing Victoria’s Public Land Forests—A Two Tiered Synoptic Approach. Proceedings of the 15th Australian Remote Sensing and Photogrammetry Conference, Alice Springs, Australia, 13 September 2010.
- National Forest Inventory. Australia’s State of the Forests Report 2003; Bureau of Rural Sciences: Canberra, ACT, Australia, 2003. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2000; FAO: Rome, Italy, 2001; p. 479. [Google Scholar]
- Farmer, E.; Jones, S.; Clarke, C.; Buxton, L.; Soto-Berelov, M.; Page, S.; Mellor, A.; Haywood, A. Creating A Large Area Landcover Dataset For Public Land Monitoring And Reporting. In Progress in Geospatial Science Research; Arrowsmith, C., Bellman, C., Cartwright, W., Jones, S., Shortis, M., Eds.; Publishing Solutions: Melbourne, VIC, Australia, 2013; pp. 85–98. [Google Scholar]
- Earth Explorer. Availiable online: http://earthexplorer.usgs.gov (accessed on 27 May 2013).
- CSIRO One-second SRTM digital elevation model. Available online: http://www.csiro.au/Outcomes/Water/Water-information-systems/One-second-SRTM-Digital-Elevation-Model.aspx (accessed on 27 May 2013).
- Flood, N.; Danaher, T.; Gill, T.; Gillingham, S. An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for Eastern Australia. Remote Sens 2013, 5, 83–109. [Google Scholar]
- Haralich, R.M. Statistical and structural approach to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar]
- Paget, M.J.; King, E.A. MODIS Land Data Sets for the Australian Region; CSIRO Marine and Atmospheric Research: Canberra, ACT, Australia, 2008. [Google Scholar]
- Houlder, D.; Hutchinson, M.; Nix, H.; McMahon, J. ANUCLIM; Version 5.1; Centre for Resource and Environmental Studies: Canberra, ACT, Australia, 2001. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Freeman, E.A.; Moisen, G. PresenceAbsence: An R package for Presence-Absence Model analysis. J. Stat. Softw 2008, 23, 1–31. [Google Scholar]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model 2000, 133, 225–245. [Google Scholar]
- Shao, G.; Wu, J. On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecol 2008, 23, 505–511. [Google Scholar]
- RPy Python interface to the R Programming Language. Available online: http://rpy.sourceforge.net (accessed on 12 May 2012).
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ 2008, 112, 2999–3011. [Google Scholar]
- Woodgate, P.; Black, P. Forest Cover Changes in Victoria 1869–1987; Remote Sensing Group, Lands and Forests Division, Dept. of Conservation, Forests and Lands: Melbourne, VIC, Australia, 1988; p. 31. [Google Scholar]
- Armston, J. D. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens 2009, 3, 033540. [Google Scholar]
- Chen, D.; Stow, D. The effect of training strategies on supervised classification at different spatial resolutions. Photogramm. Eng. Remote Sensing 2002, 68, 1155–1161. [Google Scholar]
Predictor Variable | Units/Data Source | Spatial Resolution (m) |
---|---|---|
Surface Reflectance | ||
Landsat TM band 1 | 0.45–0.52 μm | 30 |
Landsat TM band 2 | 0.52–0.60 μm | 30 |
Landsat TM band 3 | 0.63–0.69 μm | 30 |
Landsat TM band 4 | 0.76–0.90 μm | 30 |
Landsat TM band 5 | 1.55–1.75 μm | 30 |
Landsat TM band 7 | 2.08–2.35 μm | 30 |
Textural Indices | ||
Variance (3 × 3) | 30 | |
Variance (5 × 5) | Landsat TM NDVI | 30 |
Diversity (3 × 3) | 30 | |
Phenological Variability | ||
NDVI Variance | MODIS NDVI | 250 |
Topography and Climate | ||
Elevation | SRTM DEM | 30 |
Slope | SRTM DEM | 30 |
Aspect | SRTM DEM | 30 |
Annual Precipitation | mm | 250 |
Annual Temperature Range | °C | 250 |
Annual Mean Temperature | °C | 250 |
Annual Mean Moisture Index | 0–1 | 250 |
Kappa (CI 95%) | 0.914 (0.909–0.919) | |
AUC (CI 95%) | 0.992 (0.991–0.992) | |
Percent Correctly Classified (CI 95%) | 95.7 (95.4–95.9) | |
Forest | Non-forest | |
Kappa maximised binary threshold value | 0.5 | |
Sensitivity | 94.42 | 96.94 |
Specificity | 96.94 | 94.42 |
Test (Validation Data) | ||
Producer’s accuracy (omission) | 94.42 | 96.94 |
User’s accuracy (commission) | 96.86 | 94.56 |
Test OOB | ||
Producer’s accuracy | 94.60 | 96.44 |
User’s accuracy | 96.51 | 94.49 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sens. 2013, 5, 2838-2856. https://doi.org/10.3390/rs5062838
Mellor A, Haywood A, Stone C, Jones S. The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sensing. 2013; 5(6):2838-2856. https://doi.org/10.3390/rs5062838
Chicago/Turabian StyleMellor, Andrew, Andrew Haywood, Christine Stone, and Simon Jones. 2013. "The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification" Remote Sensing 5, no. 6: 2838-2856. https://doi.org/10.3390/rs5062838
APA StyleMellor, A., Haywood, A., Stone, C., & Jones, S. (2013). The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sensing, 5(6), 2838-2856. https://doi.org/10.3390/rs5062838