Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data
<p>The study area which is located in the east of the Netherlands, indicated on the CHRIS nadir image in true colour band composition (R: 675.2 nm, G: 551.7 nm, B: 490.5 nm). The red circle represents the river floodplains of Millingerwaard. The black outlined river area overlain on the CHRIS nadir image represents the nature reserve the Gelderse Poort.</p> ">
<p>Polar plot showing the actual positions of the five angular CHRIS images during acquisition on 6 September 2005. The solar zenith angle was 46°, the solar azimuth angle 170°.</p> ">
<p>Maximum likelihood classification result of the CHRIS nadir image of the (<b>a</b>) Gelderse Poort and (<b>b</b>) Millingerwaard (indicated with the black square) into major land cover types.</p> ">
<p>LAI maps (<b>left</b>) and derived histograms for LAI<8.5 (<b>right</b>) of Millingerwaard for the backward scattering direction (−36° VZA) (<b>top</b>), the nadir direction (<b>middle</b>) and the forward scattering direction (+36° VZA) (<b>down</b>), derived with FLIGHT model inversion.</p> ">
<p>Mean validation results and standard deviation of the estimated LAI obtained with FLIGHT model inversion, plotted against the measured LAI values obtained with the hemispherical camera for the backward scattering direction (−36° VZA), the nadir direction and the forward scattering direction (+36° VZA).</p> ">
<p>Maps of minimum RMSEs for LAI retrievals (<b>left</b>) and derived histograms for <8.5 (<b>right</b>) of Millingerwaard for the backward scattering direction (−36° VZA) (<b>top</b>), the nadir direction (<b>middle</b>) and the forward scattering direction (+36° VZA) (<b>down</b>), derived with FLIGHT model inversion.</p> ">
<p>LAI map and histogram for the backward scattering direction (−36° VZA), derived with FLIGHT model inversion after applying to the Gelderse Poort area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. CHRIS Data
2.3. Land Cover Classification of CHRIS nadir Image
2.4. FLIGHT Model Inversion to Derive LAI
2.5. Applying the Method to the Larger Floodplain Area
3. Results
3.1. Classification
3.2. Vegetation Class Based Angular LAI Retrievals
3.2. LAI Mapping of the Larger Floodplain ‘Gelderse Poort’
4. Discussion
4.1. Vegetation Density Characterization
4.2. Combined Classification and Radiative Transfer Modelling Approach
4.3. Towards Spaceborne River Floodplain Monitoring
5. Conclusions
Acknowledgments
References
- Straatsma, M.; Schipper, A.; Van der Perk, M.; Van den Brink, C.; Leuven, R.; Middelkoop, H. Impact of value-driven scenarios on the geomorphology and ecology of lower Rhine floodplains under a changing climate. Landscape Urban. Plann 2009, 92, 160–174. [Google Scholar]
- Tol, R.S.J.; Van Der Grijp, N.; Olsthoorn, A.A.; van der Werff, P.E. Adapting to climate: A case study on riverine flood risks in the Netherlands. Risk Anal 2003, 23, 575–583. [Google Scholar]
- Bronstert, A. Floods and climate change: Interactions and impacts. Risk Anal 2003, 23, 545–557. [Google Scholar]
- Pinter, N.; Van der Ploeg, R.R.; Schweigert, P.; Hoefer, G. Flood magnification on the River Rhine. Hydrol. Process 2006, 20, 147–164. [Google Scholar]
- Disse, M.; Engel, H. Flood events in the Rhine basin: Genesis, influences and mitigation. Nat. Hazards 2001, 23, 271–290. [Google Scholar]
- Middelkoop, H.; Daamen, K.; Gellens, D.; Grabs, W.; Kwadijk, J.C.J.; Lang, H.; Parmeti, B.W.A.H.; Schädler, B.; Schulla, J.; Wilke, K. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim. Change 2001, 49, 105–128. [Google Scholar]
- Silva, W.; Klijn, F.; Dijkman, J. Room for the Rhine Branches in The Netherlands; What the Research Has Taught Us; RIZA report 03; RIZA: Arnhem, The Netherlands, 2001. [Google Scholar]
- Van Stokkom, H.T.C.; Smits, A.J.M. Flood Defense in the Netherlands: A New Era, a New Approach. In Flood Defence; Wu, B., Wang, Z., Wang, G., Huang, G.G.H., Fang, H., Huang, J., Eds.; Science Press: New York, NY, USA, 2002; pp. 34–47. [Google Scholar]
- Kooistra, L.; Wamelink, G.W.W.; Schaepman-Strub, G.; Schaepman, M.E.; Dobben, H.F.; van Aduaka, U.; Batelaan, O. Assessing and predicting biodiversity in a floodplain ecosystem: Assimilation of net primary prodution derived from imaging spectrometer data into a dynamic vegetation model. Remote Sens. Environ 2008, 112, 2118–2130. [Google Scholar]
- Baptist, M.J.; Penning, W.E.; Duel, H.; Smits, A.J.M.; Geerling, G.W.; van der Lee, G.E.M.; van Alphen, J.S.L. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine river. River Res. Appl 2004, 20, 285–297. [Google Scholar]
- Geerling, G.W.; Kater, E.; Van den Brink, C.; Baptist, M.J.; Ragas, A.M.J.; Smits, A.J.M. Nature rehabilitation by floodplain excavation: The hydraulic effect of 16 years of sedimentation and vegetation succession along the Waal River, NL. Geomorphology 2008, 99, 317–328. [Google Scholar]
- Straatsma, M.W.; Baptist, M.J. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ 2008, 112, 1062–1080. [Google Scholar]
- Duel, H.; Baptist, M.J.; Penning, W.E. Cyclic Floodplain Rejuvenation: A New Strategy Based on Floodplain Measures for Both Flood Risk Management and Enhancement of the Biodiversity of the River Rhine; NCR Publication; NCR: Delft, The Netherlands, 2001; p. 14. [Google Scholar]
- Petryk, S.; Bosmajian, G.B. Analysis of flow through vegetation. J. Hydraul. Div 1975, 101, 871–884. [Google Scholar]
- Thompson, G.T.; Roberson, J.A. A theory of flow resistance for vegetated channels. Trans. ASABE 1976, 19, 288–293. [Google Scholar]
- Pasche, E.; Rouvé, G. Overbank flow with vegetatively roughened flood plains. J. Hydraul. Eng 1985, 111, 1262–1278. [Google Scholar]
- Kouwen, N.; Fathi-Moghadam, M. Friction factors for coniferous trees along rivers. J. Hydraul. Eng 2000, 126, 732–740. [Google Scholar]
- Järvelä, J. Determination of flow resistance caused by nonsubmerged woody vegetation. Int. J. River Basin Man 2004, 2, 61–70. [Google Scholar]
- Van Velzen, E.H.; Jesse, P.; Cornelissen, P.; Coops, H. Stromingsweerstand Vegetatie in Uiterwaarden, Deel 1 Handboek; RIZA Rapport, RIZA: Arnhem, The Netherlands, 2003; p. 28. [Google Scholar]
- Forzieri, G.; Guarnieri, L.; Vivoni, E.R.; Castelli, F.; Preti, F. Spectral-ALS data fusion for different roughness parameterizations of forested floodplains. River Res. Appl 2011, 27, 826–840. [Google Scholar]
- Forzieri, G.; Castelli, F.; Preti, F. Advances in remote sensing of hydraulic roughness. Int. J. Remote Sens 2012, 33, 630–654. [Google Scholar]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muysa, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol 2004, 121, 19–35. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ 1991, 35, 161–173. [Google Scholar]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ 2001, 76, 156–172. [Google Scholar]
- Im, J.; Jensen, J. R.; Jensen, R. J.; Gladden, J.; Waugh, J.; Serrato, M. Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing. Remote Sens 2012, 4, 327–353. [Google Scholar]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ 2008, 112, 2341–2353. [Google Scholar]
- Verrelst, J.; Schaepman, M.; Malenovsky, Z.; Clevers, J. Effects of woody elements on forest canopy chlorophyll content retrieval. Remote Sens. Environ 2010, 114, 647–656. [Google Scholar]
- Ross, J. The Radiation Regime and Architecture of Plant Stands; Dr W. Junk Publishers: The Hague, The Netherlands, 1981. [Google Scholar]
- Kempeneers, P.; Zarco-Tejada, P.J.; North, P.R.J.; de Backer, S.; Delalieux, S.; Sepulcre-Canto, G.; Morales, F.; van Aardt, J.A.N.; Sagardoy, R.; Coppin, P.; Scheunders, P. Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int. J. Remote Sens 2008, 29, 5093–5111. [Google Scholar]
- Sandmeier, S.; Deering, D.W. Structure analysis and classification of boreal forests using airborne hyperspectral BRDF data from ASAS. Remote Sens. Environ 1999, 69, 281–295. [Google Scholar]
- Diner, D.J.; Asner, G.P.; Davies, R.; Knyazikhin, Y.; Muller, J.-P.; Nolin, A.W.; Pinty, B.; Schaaf, C.B.; Stroeve, J. New directions in earth observing: Scientific applications of multiangle remote sensing. Bull. Amer. Meteor. Soc 1999, 80, 2209–2228. [Google Scholar]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.-L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ 2003, 84, 516–525. [Google Scholar]
- Diner, D.J.; Braswell, B.H.; Davies, R.; Gobron, N.; Hu, J.; Jin, Y.; Kahn, R.A.; Knyazikhin, Y.; Loeb, N.; Muller, J-P.; Nolin, A.W.; Pinty, B.; Schaaf, C.B.; Seiz, G.; Strove, J. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ 2005, 97, 495–518. [Google Scholar]
- Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens 2004, 42, 1512–1520. [Google Scholar]
- Heiskanen, J. Tree cover and height estimation in the Fennoscandian tundra–taiga transition zone using multiangular MISR data. Remote Sens. Environ 2006, 103, 97–114. [Google Scholar]
- Pocewicz, A.; Vierling, L.A.; Lentile, L.B.; Smith, R. View angle effects on relationships between MISR vegetation indices and leaf area index in a recently burned ponderosa pine forest. Remote Sens. Environ 2007, 107, 322–333. [Google Scholar]
- Chopping, M.; Moisen, G.G.; Su, L.; Laliberte, A.; Rango, A.; Martonchik, J.V.; Peters, D.P.C. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sens. Environ 2008, 112, 2051–2063. [Google Scholar]
- Verrelst, J.; Schaepman, M.E.; Clevers, J.G.P.W. Spectrodirectional Minnaert-k retrieval using CHRIS-PROBA data. Can. J. Remote Sens. 2010, 36, 631–644. [Google Scholar]
- Verrelst, J.; Clevers, J.G.P.W.; Schaepman, M.E. Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBA data. IEEE Trans. Geosci. Remote Sens 2010, 48, 4014–4022. [Google Scholar]
- Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sens. Environ 1998, 66, 222–233. [Google Scholar]
- Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.; Wagner, W. Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens 2009, 1, 1139–1170. [Google Scholar]
- Migdall, S.; Bach, H.; Bobert, J.; Wehrhan, M. Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield. Precis. Agr 2009, 10, 508–524. [Google Scholar]
- Verrelst, J.; Geerling, G.W.; Sykora, K.V.; Clevers, J.G.P.W. Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 83–94. [Google Scholar]
- Ma, J.; Chan, J.C.-W.; Canters, F. Fully automatic subpixel image registration of multiangle CHRIS/PROBA Data. IEEE Trans. Geosci. Remote Sens 2010, 48, 2829–2839. [Google Scholar]
- Guanter, L.; Alonso, L.; Moreno, J. A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Trans. Geosci. Remote Sens 2005, 43, 2908–2917. [Google Scholar]
- North, P.R.J. Three-dimensional Forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens 1996, 34, 946–956. [Google Scholar]
- Broadbent, E.N.; Zarin, D.J.; Asner, G.P.; Peña-Claros, M.; Cooper, A.; Littell, R. Recovery of forest structure and spectral properties after selective logging in lowland Bolivia. Ecol. Appl 2006, 16, 1148–1163. [Google Scholar]
- Gensuo, J.J.; Burke, I.C.; Goetz, A.F.H.; Kaufmann, M.R.; Kindel, B.C. Assessing spatial patterns of forest fuel using AVIRIS data. Remote Sens. Environ 2006, 102, 318–327. [Google Scholar]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ 2009, 113, 928–945. [Google Scholar]
- Kimes, D.S.; Knyazikhin, Y.; Privette, J.L.; Abuelgasim, A.A.; Gao, F. Inversion methods for physically-based models. Remote Sens. Rev 2000, 18, 381–439. [Google Scholar]
- Combal, B.; Baret, F.; Weiss, M. Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 2002, 22, 205–215. [Google Scholar]
- Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D’Urso, G. Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize. Can. J. Remote Sens 2009, 35, 230–247. [Google Scholar]
- Vohland, M.; Mader, S.; Dorigo, W. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL. Int. J. Appl. Earth Obs. Geoinf 2010, 12, 71–80. [Google Scholar]
- Schaepman, M.E.; Wamelink, G.W.W.; Dobben, H.F.; van Gloor, M.; Schaepman-Strub, G.; Kooistra, L.; Clevers, J.G.P.W.; Schmidt, A.M.; Berendse, F. River floodplain vegetation scenario development using imaging spectroscopy derived products as input variables in a dynamic vegetation model. Photogramm. Eng. Remote Sensing 2007, 73, 1179–1188. [Google Scholar]
- Justice, C.; Belward, A.; Morisette, J.; Lewis, P.; Privette, J.; Baret, F. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int. J. Remote Sens 2000, 21, 3383–3390. [Google Scholar]
- Mengesha, T.; Schaepman, M.E.; De Bruin, S.; Zurita-Milla, R.; Kooistra, L. Ground Validation of Biophysical Products Using Imaging Spectroscopy in Softwood Forests. Proceedings of the VALERI Workshop, Avignon, France, 10 March 2005. [CD-ROM]..
- Clevers, J.G.P.W.; Kooistra, L. AHS2005: The 2005 Airborne Imaging Spectroscopy Campaign in the Millingerwaard, the Netherlands; CGI Report 2008-001; Centre for Geo-Information, Wageningen University: Wageningen, The Netherlands, 2008. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Alonso, L.; Moreno, J. ARTMO: An Automated Radiative Transfer Models Operator Toolbox for Automated Retrieval of Biophysical Parameters through Model Inversion. Proceedings of 7th EARSeL Workshop on Imaging Spectrometry, Edinburgh, UK, 11–13 April 2011.
- Dorigo, W.A. Improving the robustness of cotton status characterisation by radiative transfer model inversion of multi-angular CHRIS/PROBA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 18–29. [Google Scholar]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar]
- Simic, A.; Chen, J.M. Refining a hyperspectral and multiangle measurement concept for vegetation structure assessment. Can. J. Remote Sens 2008, 34, 174–191. [Google Scholar]
- Liesenberg, V.; Galvão, L.S.; Ponzoni, F.J. Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data. Remote Sens. Environ 2007, 107, 276–286. [Google Scholar]
- Xavier, A.S.; Galvão, L.S. View angle effects on the discrimination of selected Amazonian land cover types from a principal-component analysis of MISR spectra. Int. J. Remote Sens 2005, 26, 3797–3811. [Google Scholar]
- Rautiainen, M.; Lang, M.; Mõttus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lükk, T. Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens. Environ 2008, 112, 2627–2642. [Google Scholar]
- Gond, V.; De Pury, D.G.G.; Veroustraete, F.; Ceulemans, R. Seasonal variations in leaf area index, leaf chlorophyll, and water content; Scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree Phys 1999, 19, 673–679. [Google Scholar]
- Soudani, K.; François, C.; le Maire, G.; Le Dantec, V.; Dufrêne, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ 2006, 102, 161–175. [Google Scholar] [Green Version]
- Zhang, Q.; Xiao, X.; Braswell, B.; Linder, E.; Baret, F.; Moore, B., III. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ 2005, 99, 357–371. [Google Scholar]
- Duca, R.; Del Frate, F. Hyperspectral and multiangle CHRIS-PROBA images for the generation of land cover maps. IEEE Trans. Geosci. Remote Sens 2008, 46, 2857–2866. [Google Scholar]
- Braswell, B.H.; Hagena, S.C.; Frolkinga, S.E.; Salas, W.A. A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon region. Remote Sens. Environ 2003, 87, 243–265. [Google Scholar]
- Galvão, L.S.; Ponzoni, F.J.; Liesenberg, V.; Dos Santos, J.R. Possibilities of discriminating tropical secondary succession in Amazônia using hyperspectral and multiangular CHRIS/PROBA data. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 8–14. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens 2007, 28, 823–870. [Google Scholar]
- Thenkabail, P.S.; Lyon, G.J.; Huete, A. Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Croplands. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, G.J., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Huang, J.; Zeng, Y.; Kuusk, A.; Wu, B.; Dong, L.; Mao, K.; Chen, J. Inverting a forest canopy reflectance model to retrieve the overstorey and understorey leaf area index for forest stands. Int. J. Remote Sens 2011, 32, 7591–7611. [Google Scholar]
- Stuffler, T.; Kaufmann, C.; Hofer, S.; Förster, K.P.; Schreier, G.; Mueller, A.; Eckardt, A.; Bach, H.; Penné, B.; Benz, U.; Haydn, R. The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes. Acta Astronaut 2007, 61, 115–120. [Google Scholar]
- Hermann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato by VENμS and Sentinel-2 bands. Remote Sens. Environ 2011, 115, 2141–2151. [Google Scholar]
- Peduzzi, A.; Wynne, R.H.; Thomas, V.A.; Nelson, R.F.; Reis, J.J.; Sanford, M. Combined use of airborne lidar and DBInSAR data to estimate LAI in temperate mixed forests. Remote Sens 2012, 4, 1758–1780. [Google Scholar]
- Salvia, M.; Franco, M.; Grings, F.; Perna, P.; Martino, R.; Karszenbaum, H.; Ferrazzoli, P. Estimating flow resistance of wetlands using SAR images and interaction models. Remote Sens 2009, 1, 992–1008. [Google Scholar]
Sampling | Image Area | View Angles | Spectral Bands | Spectral Range | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∼ 17 m @ 556 km altitude | 13 × 13 km (744 × 748 pixels) | 5 nominal angles @ ±55°, ±36°, 0° | 18 bands with 6–33 nm width | 438–1,035 nm | ||||||||||||||
CHRISmid(nm) | 442 | 490 | 530 | 551 | 570 | 631 | 661 | 672 | 697 | 703 | 709 | 742 | 748 | 781 | 872 | 895 | 905 | 1,019 |
FWHM (nm) | 9 | 9 | 9 | 10 | 8 | 9 | 11 | 11 | 6 | 6 | 6 | 7 | 7 | 15 | 18 | 10 | 10 | 33 |
Class Name | Class Characteristics | |
---|---|---|
1 | Bare soil and pioneer vegetation | mainly sand |
2 | Grasses and low herbaceous vegetation | vegetation < 1 m |
3 | Higher herbaceous vegetation | vegetation between 1 m and 2 m |
4 | Shrubs | shrubs and trees < 5 m |
5 | Forest | trees > 5 m |
6 | Water | water |
7 | Build up | streets, houses |
8 | Arable land | maize |
Class Name | Input Spectra | ||
---|---|---|---|
Leaf | Background | Bark | |
Herbaceous | Calamagrostis epigejos | 0.95*forest background + 0.05*sandy soil | |
Shrubs | Salix alba | average (water, grass & forest background) | Salix alba |
Forest | Salix alba | forest background | Salix alba |
Class Name | Variables | Fixed Parameters | |||
---|---|---|---|---|---|
Fcover (%) | LAI (m2/m2) | PV (%) | Scene | Leaf Size (m) | |
Herbaceous | 20–100; step: 2 | 0.2–10; step: 0.1 until 5; step: 0.5 until 10 | 100 | 1D | 0.027 |
Shrubs | 20–100; step: 2 | 0.2–10; step: 0.1 until 5; step: 0.5 until 10 | 70 | 1D | 0.02 |
Forest | 20–100; step: 2 | 0.2–10; step: 0.1 until 5; step: 0.5 until 10 | 70 | 3D | 0.02 |
Fixed Parameters Tree Geometry (m) | |
---|---|
Crown shape | ellipsoid |
Crown radius | 3 |
Centre to top distance | 3 |
Height to first branch: | 1 |
Min: | |
Max: | 4 |
Trunk DBH | 0.4 |
Ground Truth | Bare soil | Grass & Low Herbaceous | Higher Herbaceous | Shrubs | Forest | Agricultural | Water | Build up |
---|---|---|---|---|---|---|---|---|
Bare soil | 11 | 1 | 2 | 3 | ||||
Grass & low herbaceous | 3 | 19 | 6 | 5 | 1 | 3 | 1 | 1 |
Higher herbaceous | 1 | 8 | 1 | 1 | ||||
Shrubs | 2 | 9 | 1 | |||||
Forest | 2 | 4 | 16 | 1 | 3 | |||
Agricultural | 1 | 17 | 1 | |||||
Water | 3 | 1 | 1 | 18 | ||||
Build up | 2 | 11 |
Share and Cite
Verrelst, J.; Romijn, E.; Kooistra, L. Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sens. 2012, 4, 2866-2889. https://doi.org/10.3390/rs4092866
Verrelst J, Romijn E, Kooistra L. Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sensing. 2012; 4(9):2866-2889. https://doi.org/10.3390/rs4092866
Chicago/Turabian StyleVerrelst, Jochem, Erika Romijn, and Lammert Kooistra. 2012. "Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data" Remote Sensing 4, no. 9: 2866-2889. https://doi.org/10.3390/rs4092866
APA StyleVerrelst, J., Romijn, E., & Kooistra, L. (2012). Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sensing, 4(9), 2866-2889. https://doi.org/10.3390/rs4092866