Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data
<p>4-CSPD algorithm using rotation of covariance matrix (the structure of entire flowchart mainly comes from [<a href="#b18-remotesensing-04-02199" class="html-bibr">18</a>]).</p> ">
<p>ALOS-PALSAR decomposition images of Tokyo Bay, Japan. The central coordinate of each image is approximately at (139°52′E, 35°20′N). The upper row (<b>a,b</b>): 4-CSPD (helix component excluded). The lower row (<b>c,d</b>): 4-CSPD with rotation. The left column (a,c) shows results from coherency matrix and the right column (b,d) shows results from covariance matrix. The red, green, and blue colors represent double-bounce, volume, and surface scattering components respectively. Areas A, B, and C are mostly composed of urban, mountainous, and sea area respectively. Area D is an area which shows remarkable change after rotation.</p> ">
<p>Optical photograph of the image corresponding to the area in <a href="#f2-remotesensing-04-02199" class="html-fig">Figure 2</a>. The central coordinate of the image is approximately at (139°52′E, 35°20′N).</p> ">
<p>Rotation Angle distribution of selected areas in <a href="#f2-remotesensing-04-02199" class="html-fig">Figure 2</a>. Horizontal axis is rotation angle and vertical axis is frequency. (<b>a</b>) Area A. (<b>b</b>) Area B. (<b>c</b>) Area C. (<b>d</b>) Area D.</p> ">
<p>Tokyo Bay Aqua-Line (Highway) near the area of <a href="#f2-remotesensing-04-02199" class="html-fig">Figure 2</a>. The central coordinate of each image is approximately at (139°53′E, 35°26′N). (<b>a</b>) 4-CSPD image without rotation. (<b>b</b>) 4-CSPD image with rotation. (<b>c</b>) Difference of <span class="html-italic">Pd</span> component between the left and the middle image.</p> ">
<p>Tokyo Bay Aqua-Line (Highway) near the area of <a href="#f2-remotesensing-04-02199" class="html-fig">Figure 2</a>. (<b>a</b>) Rotation angle image. The central coordinate of the image is approximately at (139°53′E, 35°27′N). (<b>b</b>) Rotation angle distribution of the left image. The peak around 30 degree represents the highway bridge.</p> ">
Abstract
:1. Introduction
2. Rotation of Covariance Matrix
3. 4-CSPD Algorithm Using Rotated Covariance Matrix
4. Experimental Results and Discussions
5. Conclusions
Acknowledgments
References
- Turner, D.; Woodhouse, I.H. An icon-based synoptic visualization of fully polarimetric radar data. Remote Sens 2012, 4, 648–660. [Google Scholar]
- Margarit, G.; Fabregas, X.; Mallorqui, J.J.; Pipia, L.; Borquetas, T. Polarimetric SAR interferometry simulator of complex targets. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 2015–2018.
- Migliaccio, M.; Gambardella, A.; Nunziata, F.; Shimada, M.; Isoguchi, O. The PALSAR polarimetric mode for sea oil slick observation. IEEE Trans. Geosci. Remote Sens 2009, 47, 4032–4041. [Google Scholar]
- Ramsey, E., III; Rangoonwala, A.; Suzuoki, Y.; Jones, C.E. Oil detection in a coastal marsh with polarimetric synthetic aperture radar (SAR). Remote Sens 2012, 3, 2630–2662. [Google Scholar]
- Margarit, G.; Barba Milanes, J.A.; Tabasco, A. Operational ship monitoring system based on synthetic aperture radar processing. Remote Sens 2009, 1, 375–392. [Google Scholar]
- Margarit, G.; Mallorqui, J.J.; Fortuny-Guasch, J.; Lopez-Martinez, C. Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions. IEEE Trans. Geosci. Remote Sen 2009, 47, 1224–1235. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens 1996, 34, 498–518. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens 1997, 35, 68–78. [Google Scholar]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging from Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens 1998, 36, 963–973. [Google Scholar]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens 2005, 43, 1699–1706. [Google Scholar]
- Yajima, Y.; Yamaguchi, Y.; Sato, R.; Yamada, H.; Boerner, W.M. POLSAR image analysis of wetlands using a modified four-component scattering power decomposition. IEEE Trans. Geosci. Remote Sens 2008, 46, 1667–1673. [Google Scholar]
- Zhang, L.; Zou, B.; Cai, H.; Zhang, Y. Multiple-component scattering model for polarimetric SAR image decomposition. IEEE Geosci. Remote Sens. Lett 2008, 5, 603–607. [Google Scholar]
- Arii, M.; Van Zyl, J.J.; Kim, Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens 2011, 49, 1104–1113. [Google Scholar]
- Van Zyl, J.J.; Arii, M.; Kim, Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens 2011, 49, 3452–3459. [Google Scholar]
- Antropov, O.; Rauste, Y.; Hame, T. Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest. IEEE Trans. Geosci. Remote Sens 2011, 49, 3838–3848. [Google Scholar]
- Yamaguchi, Y. Power Decomposition Based on Scattering Model. In Radar Polarimetry from Basics to Applications; (In Japanese); Chapter 8; IEICE: Tokyo, Japan, 2007; pp. 125–139. [Google Scholar]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens 2011, 49, 2251–2258. [Google Scholar]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci. Remote Sens. Lett 2006, 3, 292–296. [Google Scholar]
- Lee, J.S.; Krogager, E.; Ainsworth, T.L.; Boerner, W.M. Polarimetric analysis of radar signature of a manmade structure. IEEE Geosci. Remote Sens. Lett 2006, 3, 555–559. [Google Scholar]
Method (Rotation Range, Approach) | Pd | Pv | Ps | Pc |
---|---|---|---|---|
4-CSPD without rotation | 26.26% | 30.63% | 40.06% | 3.05% |
4-CSPD with rotation | 36.34% | 17.53% | 43.68% | 2.45% |
Share and Cite
Sugimoto, M.; Ouchi, K.; Nakamura, Y. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data. Remote Sens. 2012, 4, 2199-2209. https://doi.org/10.3390/rs4082199
Sugimoto M, Ouchi K, Nakamura Y. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data. Remote Sensing. 2012; 4(8):2199-2209. https://doi.org/10.3390/rs4082199
Chicago/Turabian StyleSugimoto, Mitsunobu, Kazuo Ouchi, and Yasuhiro Nakamura. 2012. "Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data" Remote Sensing 4, no. 8: 2199-2209. https://doi.org/10.3390/rs4082199
APA StyleSugimoto, M., Ouchi, K., & Nakamura, Y. (2012). Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data. Remote Sensing, 4(8), 2199-2209. https://doi.org/10.3390/rs4082199