Searches for Dark Matter in the Galactic Halo and Extragalactic Sources with IceCube †
<p><b>Upper limits (90% C.L.) on the velocity-averaged dark matter self-annihilation cross-section.</b> Left panel shows the limits obtained from the HESE 7.5-year analysis for the considered dark matter annihilation channels and the Einasto halo model. In the right panel, the limits for the <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> channel are compared with limits from other experiments [<a href="#B19-psf-08-00070" class="html-bibr">19</a>,<a href="#B20-psf-08-00070" class="html-bibr">20</a>,<a href="#B21-psf-08-00070" class="html-bibr">21</a>,<a href="#B22-psf-08-00070" class="html-bibr">22</a>,<a href="#B23-psf-08-00070" class="html-bibr">23</a>,<a href="#B24-psf-08-00070" class="html-bibr">24</a>]. These plots are taken from [<a href="#B16-psf-08-00070" class="html-bibr">16</a>].</p> "> Figure 2
<p><b>Lower limits (90% C.L.) on the dark matter lifetime.</b> Left panel shows the limits obtained from the HESE 7.5-year analysis for the considered dark matter decay channels and the Einasto halo model. In the right panel, the limits obtained for the <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> channel are compared with limits from other experiments [<a href="#B19-psf-08-00070" class="html-bibr">19</a>,<a href="#B20-psf-08-00070" class="html-bibr">20</a>,<a href="#B21-psf-08-00070" class="html-bibr">21</a>,<a href="#B22-psf-08-00070" class="html-bibr">22</a>,<a href="#B23-psf-08-00070" class="html-bibr">23</a>,<a href="#B24-psf-08-00070" class="html-bibr">24</a>]. These plots are taken from Reference [<a href="#B16-psf-08-00070" class="html-bibr">16</a>].</p> "> Figure 3
<p><b>Credible upper limits (90%) on the maximum dark matter–neutrino coupling strength, obtained from the HESE 7.5-year analysis.</b> Left panel shows the limits for fermionic dark matter with a vector mediator scenario. Right panel shows the limits for the scalar dark matter with a fermionic mediator scenario. In each of the panels, the limits are shown as a function of the mediator mass (<math display="inline"><semantics> <msub> <mi>m</mi> <mi>ϕ</mi> </msub> </semantics></math>) and dark matter mass (<math display="inline"><semantics> <msub> <mi>m</mi> <mi>χ</mi> </msub> </semantics></math>). The pink line separates the regions of parameter space where cosmology or IceCube gives stronger bounds. The plots are taken from Reference [<a href="#B16-psf-08-00070" class="html-bibr">16</a>].</p> "> Figure 4
<p><b>Limits on the velocity-averaged dark matter self-annihilation cross-section (left panel) and the dark matter lifetime (right panel).</b> The solid lines represent the limits obtained from the Neutrino Line analysis at 90% confidence level. They are compared with limits from other neutrino experiments [<a href="#B6-psf-08-00070" class="html-bibr">6</a>,<a href="#B9-psf-08-00070" class="html-bibr">9</a>,<a href="#B10-psf-08-00070" class="html-bibr">10</a>,<a href="#B24-psf-08-00070" class="html-bibr">24</a>,<a href="#B27-psf-08-00070" class="html-bibr">27</a>,<a href="#B28-psf-08-00070" class="html-bibr">28</a>]. The plots are taken from Reference [<a href="#B26-psf-08-00070" class="html-bibr">26</a>].</p> "> Figure 5
<p><b>Sensitivities (90% C.L.) of the low-energy Galactic Center analysis to the velocity-averaged dark matter self-annihilation cross-section.</b> Left panel presents the sensitivities calculated for the considered dark matter annihilation channels and the NFW halo model. Right panel shows the sensitivities for the <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mo>+</mo> </msup> <msup> <mi>τ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> channel compared with limits from other neutrino experiments [<a href="#B10-psf-08-00070" class="html-bibr">10</a>,<a href="#B11-psf-08-00070" class="html-bibr">11</a>,<a href="#B29-psf-08-00070" class="html-bibr">29</a>]. The plots are taken from [<a href="#B26-psf-08-00070" class="html-bibr">26</a>].</p> "> Figure 6
<p><b>Sensitivities of the extragalactic decaying dark matter analysis to the dark matter lifetime.</b> The solid lines represent the sensitivities of the analysis, calculated at 90% confidence level. The other lines are limits from recent IceCube and HAWC analyses [<a href="#B16-psf-08-00070" class="html-bibr">16</a>,<a href="#B23-psf-08-00070" class="html-bibr">23</a>,<a href="#B24-psf-08-00070" class="html-bibr">24</a>,<a href="#B35-psf-08-00070" class="html-bibr">35</a>,<a href="#B36-psf-08-00070" class="html-bibr">36</a>,<a href="#B37-psf-08-00070" class="html-bibr">37</a>]. The confidence levels associated with the IceCube and HAWC limits are 90% and 95%, respectively.</p> ">
Abstract
:1. Introduction
2. HESE 7.5-Year Analyses
3. Neutrino Line Analysis
4. Galactic Center Analysis with OscNext 8-Year Sample
5. Search for Dark Matter Decay in Galaxy Clusters and Galaxies
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Search for annihilating dark matter in the Sun with 3 years of IceCube data. Eur. Phys. J. C 2017, 77, 146, Erratum in Eur. Phys. J. C 2019, 79, 214. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; et al. Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore. Phys. Rev. D 2022, 105, 062004. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. First search for dark matter annihilations in the Earth with the IceCube Detector. Eur. Phys. J. C 2017, 77, 82. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.M.; Junior, A.A.A.; Amin, N.M.B.; An, R.; et al. Search for dark matter from the center of the Earth with 8 years of IceCube data. In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Berlin, Germany, 12–23 July 2021; p. 526. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope. Phys. Rev. D 2011, 84, 022004. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; et al. Search for Neutrinos from Annihilating Dark Matter in the Direction of the Galactic Center with the 40-String IceCube Neutrino Observatory. arXiv 2012, arXiv:1210.3557. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; et al. Search for Dark Matter Annihilation in the Galactic Center with IceCube-79. Eur. Phys. J. C 2015, 75, 492. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore. Eur. Phys. J. C 2016, 76, 531. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore Eur. Phys. J. C 2017, 77, 627. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; Bertin, V.; et al. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Phys. Rev. D 2020, 102, 082002. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters. Phys. Rev. D 2013, 88, 122001. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2021, 104, 022002. [Google Scholar] [CrossRef]
- Vincent, A.C.; Martin, P.; Cline, J.M. Interacting dark matter contribution to the Galactic 511 keV gamma ray emission: Constraining the morphology with INTEGRAL/SPI observations. J. Cosmol. Astropart. Phys. 2012, 4, 022. [Google Scholar] [CrossRef]
- Einasto, J. On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters. Trudy Astrofiz. Instituta Alma-Ata 1965, 5, 87–100. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alves, A.A., Jr.; Amin, N.M.; Andeen, K.; et al. Searches for Connections between Dark Matter and High-Energy Neutrinos with IceCube. arXiv 2022, arXiv:2205.12950. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867. [Google Scholar] [CrossRef]
- Nesti, F.; Salucci, P. The Dark Matter halo of the Milky Way, AD 2013. J. Cosmol. Astropart. Phys. 2013, 7, 016. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martà , J.; Basa, S.; et al. Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Phys. Lett. B 2017, 769, 249–254. [Google Scholar] [CrossRef]
- Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; et al. VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1. Phys. Rev. D 2012, 85, 062001, Erratum in Phys. Rev. D 2015, 91, 129903. [Google Scholar] [CrossRef]
- MAGIC Collaboration. Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies. J. Cosmol. Astropart. Phys. 2016, 2, 039. [Google Scholar] [CrossRef]
- Abdallah, H.; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; et al. Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 2016, 117, 111301. [Google Scholar] [CrossRef] [PubMed]
- Albert1, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Bautista-Elivar, N.; Becerril, A.; et al. Dark Matter Limits From Dwarf Spheroidal Galaxies with The HAWC Gamma-Ray Observatory. Astrophys. J. 2018, 853, 154. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Search for neutrinos from decaying dark matter with IceCube. Eur. Phys. J. C 2018, 78, 831. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, M.; Corcella, G.; Hektor, A.; Hütsi, G.; Kadastik, M.; Panci, P.; Raidal, M.; Sala, F.; Strumia, A. PPPC 4 DM ID: A poor particle physicist cookbook for dark matter indirect detection. J. Cosmol. Astropart. Phys. 2011, 2011, 051. [Google Scholar] [CrossRef]
- Iovine, N. Dark matter searches in the centre of the Milky Way with IceCube. In Proceedings of the 41st International Conference on High Energy Physics (ICHEP2022), Bologna, Italy, 6–13 July 2022; p. 311. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Imaizumi, S.; Ito, H.; Iyogi, K.; Kameda, J.; Kataoka, Y.; et al. Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector. Phys. Rev. D 2020, 102, 072002. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Phys. Lett. B 2017, 769, 249, Erratum in Phys. Lett. B 2019, 796, 253. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. Search for dark matter towards the Galactic Centre with 11 years of ANTARES data. Phys. Lett. B 2020, 805, 135439. [Google Scholar] [CrossRef]
- Liu, Q.; Lazar, J.; Argüelles, C.A.; Kheirandish, A. χaroν: A tool for neutrino flux generation from WIMPs. J. Cosmol. Astropart. Phys. 2020, 10, 043. [Google Scholar] [CrossRef]
- Bauer, C.W.; Rodd, N.L.; Webber, B.R. Dark matter spectra from the electroweak to the Planck scale. J. High Energy Phys. 2021, 6, 121. [Google Scholar] [CrossRef]
- Sanchez-Conde, M.A.; Cannoni, M.; Zandanel, F.; Gomez, M.E.; Prada, F. Dark matter searches with Cherenkov telescopes: Nearby dwarf galaxies or local galaxy clusters? J. Cosmol. Astropart. Phys. 2011, 12, 011. [Google Scholar] [CrossRef]
- Tamm, A.; Tempel, E.; Tenjes, P.; Tihhonova, O.; Tuvikene, T. Stellar mass map and dark matter distribution in M31. Astron. Astrophys. 2012, 546, A4. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Koushiappas, S.M.; Walker, M. Dwarf galaxy annihilation and decay emission profiles for dark matter experiments. Astrophys. J. 2015, 801, 74. [Google Scholar] [CrossRef]
- Aguilar, J.A. Searches of New Physics with the IceCube Neutrino Observatory. In Proceedings of the International Conference on Neutrinos and Dark Matter (NuDM-2022), Sharm El Sheikh, Egypt, 25–28 September 2022. [Google Scholar]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Becerril, A.; Belmont-Moreno, E.; et al. A Search for Dark Matter in the Galactic Halo with HAWC. J. Cosmol. Astropart. Phys. 2018, 2, 049. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Becerril, A.; Belmont-Moreno, E.; et al. Search for Dark Matter Gamma-ray Emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory. J. Cosmol. Astropart. Phys. 2018, 6, 043, Erratum in J. Cosmol. Astropart. Phys. 2019, 4, E01. [Google Scholar] [CrossRef]
Source | Type | RA [] | Dec [] | [] | |
---|---|---|---|---|---|
Virgo | galaxy cluster | ||||
Coma | galaxy cluster | ||||
Perseus | galaxy cluster | ||||
Andromeda | galaxy | ||||
Draco | dwarf galaxy | ||||
Ursa Major II | dwarf galaxy | ||||
Ursa Minor | dwarf galaxy | ||||
Segue 1 | dwarf galaxy | ||||
Coma Berenices | dwarf galaxy | ||||
Leo I | dwarf galaxy | ||||
Boötes I | dwarf galaxy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M., on behalf of the IceCube Collaboration. Searches for Dark Matter in the Galactic Halo and Extragalactic Sources with IceCube. Phys. Sci. Forum 2023, 8, 70. https://doi.org/10.3390/psf2023008070
Jeong M on behalf of the IceCube Collaboration. Searches for Dark Matter in the Galactic Halo and Extragalactic Sources with IceCube. Physical Sciences Forum. 2023; 8(1):70. https://doi.org/10.3390/psf2023008070
Chicago/Turabian StyleJeong, Minjin on behalf of the IceCube Collaboration. 2023. "Searches for Dark Matter in the Galactic Halo and Extragalactic Sources with IceCube" Physical Sciences Forum 8, no. 1: 70. https://doi.org/10.3390/psf2023008070