Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce
"> Figure 1
<p>The quantum yield of photosystem II (Φ<sub>PSII</sub>, top), the quantum yield of non-light-induced energy dissipation (Φ<sub>NO</sub>, middle), and the quantum yield of light-induced energy dissipation (Φ<sub>NPQ</sub>, bottom) of lettuce (<span class="html-italic">Lactuca sativa</span> ‘Green Towers’) under three different photoperiods (7, 13, and 22 h) with a daily light integral (DLI) of 20 mol m<sup>−2</sup> d<sup>−1</sup>. Data are the means of three replications ± SD.</p> "> Figure 2
<p>Non-photochemical quenching (NPQ, top) and electron transport rate (ETR, bottom) of lettuce (<span class="html-italic">Lactuca sativa</span> ‘Green Towers’) under three different photoperiods (7, 13, and 22 h) with a daily light integral (DLI) of 20 mol m<sup>−2</sup> d<sup>−1</sup> over the course of the photoperiod. The area under each ETR curve represents the daily photochemical integral (DPI). Data are the means of three replications ± SD.</p> "> Figure 3
<p>The quantum yield of photosystem II (Φ<sub>PSII</sub> = 0.792 − 0.000663 × PPFD) (<b>A</b>) and the electron transport rate [ETR = −10.1 + 112.1 × (1 − e<sup>−0.00463 × PPFD</sup>)] (<b>B</b>) of lettuce (<span class="html-italic">Lactuca sativa</span> ‘Green Towers’), averaged over the entire photoperiod, as a function of photosynthetic photon flux density (PPFD) Data points represent the mean ± SD (n = 3). Plants were measured under two daily light integrals (DLI), 15 and 20 mol m<sup>−2</sup> d<sup>−1</sup>, but DLI had no effect on the relationship between PPFD and these parameters.</p> "> Figure 4
<p>The daily photochemical integral (DPI) of lettuce (<span class="html-italic">Lactuca sativa</span> ‘Green Towers’) as a function of photoperiod and daily light integral (DLI) [DPI = 1.508 + (0.00953 × photoperiod × DLI)]. Plants measured under longer photoperiods, or under the same photoperiod but at a lower DLI, received a lower photosynthetic photon flux density (PPFD) (<a href="#plants-09-01172-t001" class="html-table">Table 1</a>). There was a significant interaction (<span class="html-italic">p</span> < 0.001) between DLI and photoperiod as indicated by the different slopes of the regression lines.</p> "> Figure 5
<p>Normalized photon flux density (PFD) of the custom-made light-emitting diode (LED) arrays used for photochemical measurements.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Time Course of ΦPSII, ΦNO, and ΦNPQ
2.2. Time Course of the Quantum Yield of NPQ and ETR
2.3. ΦPSII and ETR as a Function of PPFD
2.4. Daily Photochemical Integral
3. Discussion
3.1. Time Course of ΦPSII and ETR
3.2. Φ PSII and ETR as a Function of PPFD
3.3. Daily Photochemical Integral
3.4. Photoperiod and Crop Growth
3.5. Increasing ΦPSII, ETR, and DPI
3.6. Using DPI to Optimize Lighting Strategies
3.7. Conclusions
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Setup
4.3. Experimental Design and Data Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stober, K.; Lee, K.; Yamada, M.; Pattison, M. Energy Savings Potential of SSL in Horticultural Applications; U. S. Dept. Energy: Washington, DC, USA, 2017.
- Barber, J.; Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 1992, 17, 61–66. [Google Scholar] [CrossRef]
- Fankhauser, C.; Batschauer, A. Shadow on the plant: A strategy to exit. Cell 2016, 164, 15–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Expt. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genty, B.; Briantais, J.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Weaver, G.; van Iersel, M.W. Photochemical characterization of greenhouse-grown lettuce (Lactuca sativa L. ‘Green Towers’) with applications for supplemental lighting control. HortScience 2019, 54, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Weaver, G.; van Iersel, M.W. Longer photoperiods with adaptive lighting control can improve growth of greenhouse-grown ‘Little Gem’ lettuce (Lactuca sativa). HortScience 2020, 55, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Zhang, Y.; Zhang, Y.; Bian, Z.; Fanourakis, D.; Yang, Q.; Li, T. Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Sci. Hort. 2019, 257, 108725. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.W. Photochemical acclimation of three contrasting species to different light levels: Implications for optimizing supplemental lighting. J. Am. Soc. Hort. Sci. 2017, 142, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Expt. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dabrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosyn. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demmig-Adams, B.; Cohu, C.M.; Muller, O.; Adams, W.W. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosyn. Res. 2012, 113, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Geiger, D.R.; Servaites, J.C. Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu. Rev. Plant Biol. 1994, 45, 235–256. [Google Scholar] [CrossRef]
- Krall, J.P.; Edwards, G.E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 1992, 86, 180–187. [Google Scholar] [CrossRef]
- Tischner, R. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 2000, 23, 1005–1024. [Google Scholar] [CrossRef]
- Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 2011, 62, 157–184. [Google Scholar] [CrossRef]
- Polle, A. Mehler reaction: Friend or foe in photosynthesis? Bot. Acta 1996, 109, 84–89. [Google Scholar] [CrossRef]
- Lillo, C. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 1994, 90, 616–620. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of Q(A) redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Horton, P. Optimization of light harvesting and photoprotection: Molecular mechanisms and physiological consequences. Philos. Trans. R. Soc. B 2012, 367, 3455–3465. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Expt. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Ruban, A.V. Quantifying the efficiency of photoprotection. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef]
- Kromdijk, J.; Glowacka, K.; Leonelli, L.; Gabilly, S.T.; Iwai, M.; Niyogi, K.K.; Long, S.P. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 2016, 354, 857–861. [Google Scholar] [CrossRef] [Green Version]
- van Iersel, M.W. Optimizing LED lighting in controlled environment agriculture. In Light Emitting Diodes for Agriculture: Smart Lighting; Gupta, S.D., Ed.; Springer: Singapore, 2017; pp. 59–80. [Google Scholar] [CrossRef]
- Palmer, S. Effects of different photoperiods with constant daily light integral on growth and photosynthesis of mizuna, lettuce, and basil. HortScience 2018, 53, S247. [Google Scholar]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. HortScience 2020, in press. [Google Scholar] [CrossRef]
- Ruban, A.V. Evolution under the sun: Optimizing light harvesting in photosynthesis. J. Exp. Bot. 2015, 66, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Folta, K.M. Breeding new varieties for controlled environments. Plant Biol. 2019, 21 (Suppl. S1), 6–12. [Google Scholar] [CrossRef]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 2008, 19, 153–159. [Google Scholar] [CrossRef]
- Amthor, J.S. From sunlight to phytomass: On the potential efficiency of converting solar radiation to phyto-energy. New Phytol. 2010, 188, 939–959. [Google Scholar] [CrossRef]
- Neidhardt, J.; Benemann, J.R.; Zhang, L.; Melis, A. Photosystem-II repair and chloroplast recovery from irradiance stress: Relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth. Res. 1998, 56, 175–184. [Google Scholar] [CrossRef]
- Torres, A.P.; Lopez, R.G. Measuring Daily Light Integral in a Greenhouse; Purdue Extension: West Lafayette, IN, USA, 2010; p. 7. [Google Scholar]
- Both, A.J.; Albright, L.D.; Langhans, R.W.; Reiser, R.A.; Vinzant, B.G. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environment agriculture facility: Experimental results. Acta Hortic. 1997, 418, 45–51. [Google Scholar] [CrossRef]
- Kjaer, K.H.; Ottosen, C.O.; Jorgensen, B.N. Cost-efficient light control for production of two campanula species. Sci. Hortic. 2011, 129, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, H.K.; Fanourakis, D.; Tsaniklidis, G.; Bouranis, D.; Nejad, A.R.; Ottosen, C.-O. Using artificial lighting based on electricity price without a negative impact on growth, visual quality or stomatal closing response in Passiflora. Sci. Hort. 2020, 267, 109354. [Google Scholar] [CrossRef]
- Kjaer, K.H.; Ottosen, C.O.; Jorgensen, B.N. Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system. Sci. Hortic. 2012, 143, 189–196. [Google Scholar] [CrossRef]
- Weaver, G.M.; van Iersel, M.W.; Velni, J.M. A photochemistry-based method for optimising greenhouse supplemental light intensity. Biosyst. Eng. 2019, 182, 123–137. [Google Scholar] [CrossRef]
- Mosharafian, S.; Afzali, S.; Velni, J.M.; van Iersel, M.W. Development and implementation of a new optimal supplemental lighting control strategy in greenhouses. In Proceedings of the ASME 2020 Dynamic Systems and Control Conference, 5–7 October 2020. in press. [Google Scholar]
- van Iersel, M.W.; Weaver, G.; Martin, M.T.; Ferrarezi, R.S.; Mattos, E.; Haidekker, M. A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture. J. Am. Soc. Hort. Sci. 2016, 141, 169–176. [Google Scholar] [CrossRef] [Green Version]
Photoperiod (h) | 15 mol m−2 d−1 | 20 mol m−2 d−1 |
---|---|---|
—PPFD (µmol m−2 s−1)— | ||
7 | 595 | 794 |
10 | 416 | 555 |
13 | 320 | 427 |
16 | 260 | 347 |
19 | 219 | 292 |
22 | 189 | 252 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkins, C.; van Iersel, M.W. Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce. Plants 2020, 9, 1172. https://doi.org/10.3390/plants9091172
Elkins C, van Iersel MW. Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce. Plants. 2020; 9(9):1172. https://doi.org/10.3390/plants9091172
Chicago/Turabian StyleElkins, Claudia, and Marc W. van Iersel. 2020. "Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce" Plants 9, no. 9: 1172. https://doi.org/10.3390/plants9091172
APA StyleElkins, C., & van Iersel, M. W. (2020). Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce. Plants, 9(9), 1172. https://doi.org/10.3390/plants9091172