Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves
<p>Se concentration (mg Se kg<sup>−1</sup> dry weight (DW)) in leaves of basil plants subjected to different Se treatments (0, 4, 8 and 12 mg Se L<sup>−1</sup>) and harvested twice from subsequent regrowth (first and second cut). Bars indicated by different letters are significantly different (<span class="html-italic">p</span> < 0.05) according to the least significant difference (LSD) test.</p> "> Figure 2
<p>Ethylene production at harvest (<b>A</b>) and after 5 days of storage (<b>B</b>) in basil plants subjected to different Se treatments (0, 4, 8 and 12 mg Se L<sup>−1</sup>) and harvested twice from subsequent regrowth (first and second cut). Values with different letters are significantly different (<span class="html-italic">p</span> < 0.05) according to the LSD test.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Climatic Conditions During the Experiment
2.2. Effect of Se Application Rate on Se Content, Biomass Production and Quality of Basil
2.3. Effects of Selenium on Post-Harvest Quality
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Chemical Composition Analysis in Basil Leaves
4.2.1. Selenium Analysis
4.2.2. Nitrate Content
4.2.3. Chlorophyll and Carotenoid Contents
4.2.4. Total Phenol Content
4.2.5. Rosmarinic Acid Content
4.2.6. Antioxidant Capacity
4.2.7. Ethylene Production
4.2.8. Gas Exchange Measurements
4.2.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food. Chem. 2003, 51, 4442–4449. [Google Scholar] [CrossRef]
- Nour, A.H.; Elhussein, S.A.; Osman, N.A.; Ahmed, N.E.; Abduelrahman, A.A.; Yusoff, M.M.; Nour, A.H. Antibacterial activity of the essential oils of sudanese accessions of basil (Ocimum basilicum L.). J. Appl. Sci. 2009, 9, 4161–4167. [Google Scholar] [CrossRef]
- Oxenham, S.K.; Svoboda, K.P.; Walters, D.R. Antifungal activity of the essential oil of basil (Ocimum basilicum). J. Phytopathol. 2005, 153, 174–180. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H. Antioxidants in fruits and vegetables—The Millennuim’s health. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant. Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Tognoni, F. Hydroponic technologies for greenhouse crops. In Crops: Quality, Growth and Biotechnology; WFL Publisher: Helsinki, Finland, 2006; Volume 23, pp. 360–378. [Google Scholar]
- Hassan, F.A.S.; Mahfouz, S.A. Effect of 1-methylcyclopropene (1-MCP) treatment on sweet basil leaf senescence and ethylene production during shelf-life. Postharvest Biol. Technol. 2010, 55, 61–65. [Google Scholar] [CrossRef]
- López-Blancas, E.; Martínez-Damián, M.T.; Colinas-León, M.T.; Martínez Solís, J.; Rodríguez-Pérez, E.J. Basil ‘Nufar’ (Ocimum basilicum L.) post-harvest quality under refrigeration. Rev. Chapingo Ser. Hortic. 2014, 20, 187–200. [Google Scholar] [CrossRef]
- Sharma, R.; Bhatia, S.; Kaur, P. Influence of packaging and storage conditions on biochemical quality and enzymatic activity in relation to shelf life enhancement of fresh basil leaf. J. Food Sci. Technol. 2018, 55, 3199–3211. [Google Scholar] [CrossRef]
- Birringer, M.; Pilawa, S.; Flohé, L. Trends in selenium biochemistry. Nat. Prod. Rep. 2002, 19, 693–718. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Devi, D.D.; Shanker, A.K.; Sheeba, J.A.; Bangarusamy, U. Selenium—An antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Lv, J.; Wu, J.; Zuo, J.; Fan, L.; Shi, J.; Gao, L.; Li, M.; Wang, Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem. 2017, 216, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Malorgio, F.; Diaz, K.E.; Ferrante, A.; Mensuali-Sodi, A.; Pezzarossa, B. Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J. Sci. Food Agric. 2009, 89, 2243–2251. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bañuelos, G.S.; Lin, Z.Q. Use and Development of Biofortified Agricultural Products; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Stroud, J.L.; Li, H.F.; Lopez-Bellido, F.J.; Broadley, M.R.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mowat, H.; et al. Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant Soil 2010, 332, 31–40. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Z.; Li, J.; Zhao, P.; Qin, S.; Nie, Z. The impact of phosphorus supply on selenium uptake during hydroponics experiment of winter wheat (Triticum aestivum) in China. Front. Plant Sci. 2018, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Barátová, S.; Mezeyova, I.; Hegedusová, A.; Andrejiová, A. Impact of biofortification, variety and cutting on chosen qualitative characteristic of basil (Ocimum basilicum L.). Acta Fytotech. Zootech. 2015, 18, 71–75. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Enhanced selenium content in sweet basil (Ocimum basilicum L.) by foliar fertilization. Veg. Crops Res. Bull. 2008, 69, 63–72. [Google Scholar] [CrossRef]
- Mezeyova, I.; Hegedusova, A.; Andrejiová, A.; Mezeyová, I.; Hegedűsová, A.; Hegedűs, O.; Golian, M. Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. J. Int. Sci. Publ. 2016, 4, 19–27. [Google Scholar]
- Puccinelli, M.; Malorgio, F.; Rosellini, I.; Pezzarossa, B. Uptake and partitioning of selenium in basil (Ocimum basilicum L.) plants grown in hydroponics. Sci. Hortic. 2017, 225, 271–276. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Ríos, J.J.; Blasco, B.; Leyva, R.; Sanchez-Rodriguez, E.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M. Nutritional Balance Changes in Lettuce Plant Grown Under Different Doses and Forms of Selenium. J. Plant Nutr. 2013, 36, 1344–1354. [Google Scholar] [CrossRef]
- Ferrarese, M.; Mahmoodi Sourestani, M.; Quattrini, E.; Schiavi, M.; Ferrante, A. Biofortification of Spinach Plants Applying Selenium in the Nutrient Solution of Floating System. Veg. Crops Res. Bull. 2012, 76, 127–136. [Google Scholar] [CrossRef]
- Hernández-Castro, E.; Trejo-Téllez, L.I.; Gómez-Merino, F.C.; Rodríguez-Mendoza, M.N.; Sánchez-García, P.; Robledo-Paz, A. Bioaccumulation of iron, selenium, nitrate, and proteins in chard shoots. J. Soil Sci. Plant. Nutr. 2015, 15, 694–710. [Google Scholar] [CrossRef]
- Renkema, H.; Koopmans, A.; Kersbergen, L.; Kikkert, J.; Hale, B.; Berkelaar, E. The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil 2012, 354, 239–250. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Sady, W. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hortic. 2014, 166, 9–16. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Matraszek, R.; Pogorzelec, M. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant. 2015, 37, 41. [Google Scholar] [CrossRef] [Green Version]
- Horak, M.J.; Loughin, T.M. Growth analysis of four Amaranthus species. Weed Sci. 2000, 48, 347–355. [Google Scholar] [CrossRef]
- Rai, V.; Vajpayee, P.; Singh, S.N.; Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant. Sci. 2004, 167, 1159–1169. [Google Scholar] [CrossRef]
- Mohr, H.; Neininger, A.; Seith, B. Control of Nitrate Reductase and Nitrite Reductase Gene Expression by Light, Nitrate and a Plastidic Factor. Bot. Acta 1992, 105, 81–89. [Google Scholar] [CrossRef]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonc¸alves, B.; Santos, C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Nazir, F.; Asgher, M.; Per, T.S.; Khan, N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 2015, 173, 9–18. [Google Scholar] [CrossRef]
- Diao, M.; Ma, L.; Wang, J.; Cui, J.; Fu, A.; Liu, H. Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System. J. Plant Growth Regul. 2014, 33, 1–12. [Google Scholar] [CrossRef]
- Baille, M.; Baille, A.; Laury, J.C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002, 177, 67–80. [Google Scholar] [CrossRef]
- Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food. Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Oraghi Ardebili, Z.; Oraghi Ardebili, N.; Jalili, S.; Safiallah, S. The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Bot. 2015, 39, 401–407. [Google Scholar] [CrossRef]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Ferrante, A.; Incrocci, L.; Maggini, R.; Serra, G.; Tognoni, F. Colour changes of fresh-cut leafy vegetables during storage. J. Food Agric. Environ. 2004, 22, 40–44. [Google Scholar]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaoki, M.; Freeman, J.L.; Pilon-Smits, E.A. Cooperative Ethylene and Jasmonic Acid Signaling Regulates Selenite Resistance in Arabidopsis. Plant Physiol. 2008, 146, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Lmaseki, H. The biochemistry of ethylene biosynthesis. In The Plant Hormone Ethylene; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–20. [Google Scholar]
- Tamaoki, M.; Maruyama-Nakashita, A. Molecular Mechanisms of Selenium Responses and Resistance in Plants. In Selenium in Plants; Springer: Cham, Switzerland, 2017; pp. 35–51. [Google Scholar]
- Jiang, W.; Sheng, Q.; Zhou, X.-J.; Zhang, M.-J.; Liu, X.-J. Regulation of detached coriander leaf senescence by 1-methylcyclopropene and ethylene. Postharvest Biol. Technol. 2002, 26, 339–345. [Google Scholar] [CrossRef]
- Zasoski, R.J.; Burau, R.G. A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Commun. Soil Sci. Plant Anal. 1977, 8, 425–436. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Welburn, A.R.; Lichtenthaler, H. Formulae and Program to Determine Carotenoids and Chlorophyll A and B of Leaf Extracts in Dfferent Solvents: Advances in Photosyntesis Research; Martinus Njhorff/Dr. W: Leiden, The Netherlands, 1984; Volume II. [Google Scholar]
- Kang, H.M.; Saltveit, M.E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent. Eur. J. Biol. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
Climatic Parameters | 1st Cut Nov 6–Dec 4 | 2nd Cut Dec 4–Dec 21 |
---|---|---|
Days of treatment | 28 | 17 |
Daily mean temperature (°C) | 17.5 | 16.6 |
Cumulative radiation (MJ m−2) | 101.5 | 57.8 |
Daily mean radiation (MJ day−1 m−2) | 3.5 | 3.3 |
Growing degree days (°C day−1) | 102.9 | 74.1 |
Evapotranspiration (L H2O m−2) | 7.54 | 3.34 |
Se Added | Cut | Leaf Biomass | Nitrate Content | E | GS | Pn |
---|---|---|---|---|---|---|
mg L−1 | g DW m−2 | mg kg−1 FW | mmol H2O m−2 s−1 | mmol H2O m−2 s−1 | mmol CO2 m−2 s−1 | |
0 | 1st | 125 a | 2984 a | 1.48 a | 240 a | 8.6 a |
2nd | 88 a | 3706 a | 1.23 a | 213 a | 4.8 a | |
4 | 1st | 117 a | 3031 a | 1.76 a | 253 a | 9.5 a |
2nd | 79 a | 3951 a | 1.30 a | 201 a | 5.6 a | |
8 | 1st | 123 a | 3020 a | 1.97 a | 303 a | 9.7 a |
2nd | 77 a | 4532 a | 1.35 a | 252 a | 5.6 a | |
12 | 1st | 119 a | 3860 a | 1.37 a | 165 a | 4.2 a |
2nd | 62 a | 4140 a | 1.01 a | 160 a | 3.7 a | |
Main Effects | ||||||
0 | 107 a | 3345 b | 1.36 a | 226 a | 6.7 a | |
4 | 98 a | 3491 b | 1.53 a | 227 a | 7.5 a | |
8 | 100 a | 3776 ab | 1.66 a | 277 a | 7.7 a | |
12 | 90 a | 4000 a | 1.19 a | 162 b | 5.0 b | |
1st | 121 a | 3224 b | 1.65 a | 240 a | 8.0 a | |
2nd | 76 b | 4082 a | 1.22 b | 206 a | 5.4 b | |
Analysis of Variance | ||||||
Cut (A) | *** | *** | ** | ns | *** | |
Se concentration (B) | ns | ** | ns | ** | ** | |
A × B | ns | ns | ns | ns | ns |
Se Added | Cut | Antioxidant Capacity | Total Phenol Content | Rosmarinic Acid Content | Total Chlorophyll |
---|---|---|---|---|---|
mg L−1 | µmol Fe (II) mg−1 DW | mg GAE g−1 DW | mg g−1 DW | mg g−1 DW | |
0 | 1st | 236 a | 11.1 a | 22.3 a | 6.9 a |
2nd | 248 a | 18.9 ab | 28.7 a | 9.3 a | |
4 | 1st | 320 a | 11.9 a | 22.5 a | 6.1 a |
2nd | 269 a | 20.3 b | 28.9 a | 9.9 a | |
8 | 1st | 361 a | 12.7 a | 22.8 a | 6.7 a |
2nd | 261 a | 20.6 b | 31.9 a | 8.9 a | |
12 | 1st | 398 a | 34.3 c | 54.6 a | 6.6 a |
2nd | 362 a | 28.7 c | 45.7 a | 8.6 a | |
Main Effects | |||||
0 | 242 c | 15.0 b | 25.5 b | 8.1 a | |
4 | 295 b | 16.1 b | 25.7 b | 8.0 a | |
8 | 311 b | 16.7 b | 27.3 b | 7.8 a | |
12 | 380a | 31.5 a | 50.1 a | 7.6 a | |
1st | 329 a | 17.5 b | 30.5 a | 6.6 b | |
2nd | 285 a | 22.1 a | 33.8 a | 9.2 a | |
Analysis of Variance | |||||
Cut (A) | ns | *** | ns | *** | |
Se concentration (B) (B) | *** | *** | *** | ns | |
A × B | ns | *** | ns | ns |
Se Added | Cut | Antioxidant Capacity | Total Phenol Content | Rosmarinic Acid Content | Total Chlorophyll |
---|---|---|---|---|---|
mg L−1 | µmol Fe (II) mg−1 DW | mg GAE g−1 DW | mg g−1 DW | mg g−1 DW | |
0 | 1st | 232 a | 12.0 a | 24.1 a | 7.5 a |
2nd | 224 a | 14.4 a | 25.5 a | 5.6 a | |
4 | 1st | 263 a | 11.5 a | 33.0 a | 6.8 a |
2nd | 245 a | 16.8 a | 34.0 a | 5.8 a | |
8 | 1st | 302 a | 12.7 a | 30.4 a | 7.4 a |
2nd | 236 a | 16.3 a | 30.4 a | 5.0 a | |
12 | 1st | 370 a | 21.4 a | 66.7 a | 7.0 a |
2nd | 342 a | 22.5 a | 47.8 a | 5.3 a | |
Main Effects | |||||
0 | 228 b | 13.2 b | 24.8 b | 6.6 a | |
4 | 254 b | 14.1 b | 33.5 b | 6.3 a | |
8 | 269 b | 14.5 b | 30.4 b | 6.2 a | |
12 | 356 a | 22.0 a | 57.2 a | 6.1 a | |
1st | 292 a | 14.4 a | 38.5 a | 7.2 a | |
2nd | 262 a | 17.5 a | 34.4 a | 5.4 b | |
Analysis of Variance | |||||
Cut (A) | ns | * | ns | *** | |
Se concentration (B) | *** | *** | *** | ns | |
A × B | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Pezzarossa, B.; Rosellini, I.; Malorgio, F. Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves. Plants 2020, 9, 801. https://doi.org/10.3390/plants9060801
Puccinelli M, Pezzarossa B, Rosellini I, Malorgio F. Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves. Plants. 2020; 9(6):801. https://doi.org/10.3390/plants9060801
Chicago/Turabian StylePuccinelli, Martina, Beatrice Pezzarossa, Irene Rosellini, and Fernando Malorgio. 2020. "Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves" Plants 9, no. 6: 801. https://doi.org/10.3390/plants9060801
APA StylePuccinelli, M., Pezzarossa, B., Rosellini, I., & Malorgio, F. (2020). Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves. Plants, 9(6), 801. https://doi.org/10.3390/plants9060801