Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes
<p>Weekly evolution of the climatic parameters: Vapor pressure deficit (VDP), reference crop evapotranspiration (ET<sub>0</sub>), and rainfall (<b>A</b>,<b>B</b>). Daily growing degree days (GDDs) and accumulated GDDs from sprouting (−62 DAFBs) (<b>C</b>,<b>D</b>). Weekly and accumulated irrigation applied for each season 2021 (<b>E</b>) and 2022 (<b>F</b>). DAFBs: days after full bloom. 0 DAFBs corresponds to 14 May 2021 and 17 May 2022, respectively, for each season. The gray dashed lines indicate the harvest period, and the red dashed line in 2022 indicates the beginning of the irrigation reduction in PI with respect to farmer irrigation.</p> "> Figure 2
<p>Daily evolution of the minimum volumetric water content in the soil profile (0 to 60 cm depth), relativized to the field capacity for each depth during the experimental period. The red dashed line indicates the beginning of the irrigation reduction in PI. Means ± SE, <span class="html-italic">n</span> = 3. The gray squares indicate the days with significant differences between irrigation treatments (<span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 3
<p>(<b>A</b>) Root density and (<b>B</b>) mycorrhization rate for biostimulated (T1–T4) and not biostimulated (T5) vines under the different irrigation programs (farmer irrigation (FI) or precision irrigation (PI)) in 2021 and 2022. Bars represent means ± SE (<span class="html-italic">n</span> = 4). Different letters indicate significant differences for the factors biostimulation, year, or irrigation in each parameter according to Duncan’s test (<span class="html-italic">p</span> < 0.05). Average value for each factor is shown. *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001; <span class="html-italic">ns</span>: not significant.</p> "> Figure 4
<p>Root starch (<b>A</b>) and soluble sugar (<b>B</b>) concentration (%, p/p) for biostimulated (T1–T4) and not biostimulated (T5) vines under the different irrigation programs (farmer irrigation (FI) or precision irrigation (PI)) in 2021 and 2022. Bars represent means ± SE (<span class="html-italic">n</span> = 4). Different letters indicate significant differences for the factors biostimulation, year, or irrigation in each parameter according to Duncan’s test (<span class="html-italic">p</span> < 0.05). Average value for each factor is shown. *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; <span class="html-italic">ns</span>: not significant.</p> "> Figure 5
<p>Irrigation water productivity (WP<sub>I</sub>) for biostimulation treatments under the different irrigation programs (farmer or precision irrigation) during the years 2021 and 2022. Bars represent means ± SE (<span class="html-italic">n</span> = 4). Average value for each factor (Y: year; B: biostimulation; I: irrigation) is shown. Different letters indicate significant differences according to Duncan’s test (<span class="html-italic">p</span> < 0.05). **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001; <span class="html-italic">ns</span>: not significant.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Climatic Condition and Irrigation Water Applied
2.2. Soil Volumetric Water Content
2.3. Vines Water Status
2.4. Root Density
2.5. Mycorrhization Rate
2.6. Starch and Soluble Sugar
2.7. Yield
3. Discussion
4. Materials and Methods
4.1. Experimental Conditions
4.2. Experimental Design
4.3. Field Measurements
4.3.1. Crop Phenology
4.3.2. Soil Volumetric Water Content
4.3.3. Vines Water Status
4.3.4. Root Evaluations
4.4. Harvest and Irrigation Water Productivity
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO FAOSTAT Online Database. Available online: https://www.fao.org/faostat/en/ (accessed on 8 August 2023).
- MAPA Agricultural Statistics. Available online: https://www.mapa.gob.es/en/estadistica/temas/estadisticas-agrarias/ (accessed on 8 August 2023).
- CCE Base de Datos de Comercio Exterior. Available online: http://aduanas.camaras.org/ (accessed on 2 October 2024).
- El-Sayed, M.; Fayed, A. Characterization and Evaluation of Some New Sweet Grape Cultivars under Egyptian Conditions. Alex. J. Agric. Sci. 2023, 68, 383–392. [Google Scholar] [CrossRef]
- Vargas, J.; Paneque, P. Challenges for the Integration of Water Resource and Drought-Risk Management in Spain. Sustainability 2019, 11, 308. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Bellvert, J.; Mata, M.; Vallverdú, X.; Paris, C.; Marsal, J. Optimizing Precision Irrigation of a Vineyard to Improve Water Use Efficiency and Profitability by Using a Decision-Oriented Vine Water Consumption Model. Precis. Agric. 2020, 22, 319–341. [Google Scholar] [CrossRef]
- Zapata-García, S.; Temnani, A.; Berríos, P.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Using Soil Water Status Sensors to Optimize Water and Nutrient Use in Melon under Semi-Arid Conditions. Agronomy 2023, 13, 2652. [Google Scholar] [CrossRef]
- Berríos, P.; Forcen, M.; Temnani, A.; Zapata, S.; Pérez, R.; Pérez-Pastor, A. Manejo del agua de riego en agricultura a través de una plataforma digital. Horticultura 2022, 361, 56–60. [Google Scholar]
- Acosta, J.A.; Gabarrón, M.; Martínez-Segura, M.; Martínez-Martínez, S.; Faz, Á.; Pérez-Pastor, A.; Gómez-López, M.D.; Zornoza, R. Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils. Sensors 2022, 22, 1365. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; ISBN 978-92-5-133441-6. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit Irrigation in Grapevine Improves Water-use Efficiency While Controlling Vigour and Production Quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- EBIC—The European Biostimulants Industry Council. Available online: https://biostimulants.eu/ (accessed on 14 September 2023).
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhong, H.; Ma, Y.; Bai, S.; Yadav, V.; Zhang, C.; Zhang, F.; Shi, W.; Abudureheman, R.; Wang, X. Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae 2024, 10, 269. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-Induced Drought Tolerance in Grapevine Is Associated with Physiological and Biochemical Changes. Chem. Biol. Technol. Agric. 2021, 8, 5. [Google Scholar] [CrossRef]
- Boselli, M.; Bahouaoui, M.A.; Lachhab, N.; Sanzani, S.M.; Ferrara, G.; Ippolito, A. Protein Hydrolysates Effects on Grapevine (Vitis vinifera L., Cv. Corvina) Performance and Water Stress Tolerance. Sci. Hortic. 2019, 258, 108784. [Google Scholar] [CrossRef]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- du Jardin, P. Plant Biostimulants: A New Paradigm for the Sustainable Intensification of Crops. In Biostimulants for Sustainable Crop Production; Rouphael, Y., du Jardin, P., Brown, P., De Pascale, S., Colla, G., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 1–27. ISBN 9781786763365. [Google Scholar]
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General Principles to Justify Plant Biostimulant Claims. Front. Plant Sci. 2019, 10, 444124. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Ma, J.; Sun, X.; Zheng, L.; Bai, S. Responses of Soil Water–Root Coupling and Coupling Effects on Grapevines to Irrigation Methods in Extremely Arid Region. Agric. Water Manag. 2024, 302, 108984. [Google Scholar] [CrossRef]
- Choné, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem Water Potential Is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of Grapevine (Vitis vinifera L.) Water Status on Water Consumption, Vegetative Growth and Grape Quality: An Irrigation Scheduling Application to Achieve Regulated Deficit Irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Pinillos, V.; Chiamolera, F.M.; Ortiz, J.F.; Hueso, J.J.; Cuevas, J. Post-Veraison Regulated Deficit Irrigation in ‘Crimson Seedless’ Table Grape Saves Water and Improves Berry Skin Color. Agric. Water Manag. 2016, 165, 181–189. [Google Scholar] [CrossRef]
- Temnani, A.; Berríos, P.; Conesa, M.R.; Pérez-Pastor, A. Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes. Agronomy 2022, 12, 1416. [Google Scholar] [CrossRef]
- Meggio, F.; Trevisan, S.; Manoli, A.; Ruperti, B.; Quaggiotti, S. Systematic Investigation of the Effects of a Novel Protein Hydrolysate on the Growth, Physiological Parameters, Fruit Development and Yield of Grapevine (Vitis vinifera L., Cv Sauvignon Blanc) under Water Stress Conditions. Agronomy 2020, 10, 1785. [Google Scholar] [CrossRef]
- Conesa, M.R.; Espinosa, P.J.; Pallarés, D.; Pérez-Pastor, A. Influence of Plant Biostimulant as Technique to Harden Citrus Nursery Plants before Transplanting to the Field. Sustainability 2020, 12, 6190. [Google Scholar] [CrossRef]
- Mancuso, S.; Briand, X.; Mugnai, S.; Azzarello, E. Marine Bioactive Substances (IPA Extract) Improve Foliar Ion Uptake and Water Stress Tolerance in Potted “Vitis vinifera” Plants. Adv. Hortic. Sci. 2006, 20, 1000–1006. [Google Scholar] [CrossRef]
- Conesa, M.R.; Berríos, P.; Temnani, A.; Pérez-Pastor, A. Assessment of the Type of Deficit Irrigation Applied during Berry Development in ‘Crimson Seedless’ Table Grapes. Water 2022, 14, 1311. [Google Scholar] [CrossRef]
- Tombesi, S.; Frioni, T.; Sabbatini, P.; Poni, S.; Palliotti, A. Ascophyllum nodosum Extract Improves Leaf Thermoregulation by Reducing Stomatal Sensitivity to VPD in Vitis vinifera L. J. Appl. Phycol. 2021, 33, 1293–1304. [Google Scholar] [CrossRef]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Domingo, R. Effects of Timing and Intensity of Deficit Irrigation on Vegetative and Fruit Growth of Apricot Trees. Agric. Water Manag. 2014, 134, 110–118. [Google Scholar] [CrossRef]
- Amendola, C.; Montagnoli, A.; Terzaghi, M.; Trupiano, D.; Oliva, F.; Baronti, S.; Miglietta, F.; Chiatante, D.; Scippa, G.S. Short-Term Effects of Biochar on Grapevine Fine Root Dynamics and Arbuscular Mycorrhizae Production. Agric. Ecosyst. Environ. 2017, 239, 236–245. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Tarara, J.M.; Smithyman, R.P. Deficit Irrigation Promotes Arbuscular Colonization of Fine Roots by Mycorrhizal Fungi in Grapevines (Vitis vinifera L.) in an Arid Climate. Mycorrhiza 2007, 17, 551–562. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 466052. [Google Scholar] [CrossRef]
- Morte, A.; Díaz, G.; Rodríguez, P.; Alarcón, J.J.; Sánchez-Blanco, M.J. Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus halepensis Plants in Response to Drought. Biol. Plant 2001, 44, 263–267. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Wang, Z.; Li, J.; Liu, K.; Huang, D. The Role of Arbuscular Mycorrhizal Symbiosis in Plant Abiotic Stress. Front. Microbiol. 2024, 14, 1323881. [Google Scholar] [CrossRef] [PubMed]
- Bonini, P.; Rouphael, Y.; Miras-Moreno, B.; Lee, B.; Cardarelli, M.; Erice, G.; Cirino, V.; Lucini, L.; Colla, G. A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism. Front. Plant Sci. 2020, 11, 567388. [Google Scholar] [CrossRef] [PubMed]
- Krishna, H.; Singh, S.K.; Sharma, R.R.; Khawale, R.N.; Grover, M.; Patel, V.B. Biochemical Changes in Micropropagated Grape (Vitis vinifera L.) Plantlets Due to Arbuscular-Mycorrhizal Fungi (AMF) Inoculation during Ex Vitro Acclimatization. Sci. Hortic. 2005, 106, 554–567. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Elsevier Science: Amsterdam, The Netherlands, 2010; ISBN 9780080559346. [Google Scholar]
- An, J.; Zeng, T.; Ji, C.; de Graaf, S.; Zheng, Z.; Xiao, T.T.; Deng, X.; Xiao, S.; Bisseling, T.; Limpens, E.; et al. A Medicago truncatula SWEET Transporter Implicated in Arbuscule Maintenance during Arbuscular Mycorrhizal Symbiosis. New Phytol. 2019, 224, 396–408. [Google Scholar] [CrossRef]
- Dahal, K.C.; Bhattarai, S.P.; Midmore, D.J.; Oag, D.R.; Walsh, K.B. Temporal Yield Variability in Subtropical Table Grape Production. Sci. Hortic. 2019, 246, 951–956. [Google Scholar] [CrossRef]
- Gaser, S.A.; SA Abo El-Wafa, T.; Mokhtar, Y.O.; Allah, N. Increasing Irrigation Water Use Efficiency by Adding Hundz Soil Conditioner to Improve Vegetative Growth, Fruit Quality and Yield on Flame Seedless Grapevines Under Water Stress Conditions. Egypt. J. Hortic. 2023, 50, 265–283. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Pereira, L.S.; Raes, D.; Wright, J.L. Revised FAO Procedures for Calculating Evapotranspiration: Irrigation and Drainage Paper No. 56 with Testing in Idaho. Watershed Manag. Oper. Manag. 2000 2004, 105, 1–10. [Google Scholar] [CrossRef]
- SIAM—Sistema de Información Agrario de Murcia Informe Agrometeorológico. Available online: http://siam.imida.es/apex/f?p=101:46:5335262445854377 (accessed on 7 November 2022).
- Köppen, W.; Geiger, R. World Maps of Köppen-Geiger Climate Classification. Available online: https://koeppen-geiger.vu-wien.ac.at/ (accessed on 16 November 2024).
- AEMET (Agencia Estatal de Meteorología) Valores Climatológicos Normales. Available online: https://www.aemet.es/ (accessed on 26 February 2024).
- Taghavi, S.; Van Der Lelie, D.; Lee, J. Bacillus Licheniformis RTI184 Compositions and Methods of Use for Benefiting Plant Growth. 2015 Patent WO2016108974A1, 30 June 2016.
- Richardson, E.A.; Seeley, S.D.; Walker, D.R.; Anderson, J.L.; Ashcroft, G.L. Pheno-Climatography of Spring Peach Bud Development. HortScience 1975, 10, 236–237. [Google Scholar] [CrossRef]
- Anastasiou, E.; Templalexis, C.; Lentzou, D.; Biniari, K.; Xanthopoulos, G.; Fountas, S. Do Soil and Climatic Parameters Affect Yield and Quality on Table Grapes? Smart Agric. Technol. 2023, 3, 100088. [Google Scholar] [CrossRef]
- Forcén-Muñoz, M.; Pavón-Pulido, N.; López-Riquelme, J.A.; Temnani-Rajjaf, A.; Berríos, P.; Morais, R.; Pérez-Pastor, A. Irriman Platform: Enhancing Farming Sustainability through Cloud Computing Techniques for Irrigation Management. Sensors 2021, 22, 228. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Somogyi, M. A Reagent for the Copper-Iodometric Determination of Very Small Amounts of Sugar. J. Biol. Chem. 1937, 117, 771–776. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158-IN18. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A New Method Which Gives an Objective Measure of Colonization of Roots by Vesicular—Arbuscular Mycorrhizal Fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Fernández, E. Editorial Note on Terms for Crop Evapotranspiration, Water Use Efficiency and Water Productivity. Agric. Water Manag. 2023, 289, 108548. [Google Scholar] [CrossRef]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water Use Indicators and Economic Analysis for On-Farm Irrigation Decision: A Case Study of a Super High Density Olive Tree Orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Levene, H. Robust Tests for Equality of Variances. Contrib. Probab. Stat. 1961, 69, 279–292. [Google Scholar]
- Yitnosumarto, S.; O’Neill, M.E. On Levene’s Test of Variance Homogeneity. Aust. J. Stat. 1986, 28, 230–241. [Google Scholar] [CrossRef]
- O’Brien, R.G. A Simple Test for Variance Effects in Experimental Designs. Psychol. Bull. 1981, 89, 570–574. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat 2020. Available online: https://www.infostat.com.ar (accessed on 15 April 2022).
Year (Y) | Treatment (T) | Biostimulation (B) | Irrigation (I) | Pn (µmol m−² s−¹) | Lc (mol m−² s−¹) | Ψs (MPa) | ||
---|---|---|---|---|---|---|---|---|
2021 | T1 | Yes | Farmer | 10.28 | A | 0.1161 | a | |
T2 | 9.87 | A | 0.1039 | ab | ||||
T3 | 8.85 | Ab | 0.0978 | ab | ||||
T4 | 8.53 | Ab | 0.0871 | b | ||||
T5 | No | 7.80 | B | 0.0814 | b | |||
ANOVA | 0.0132 * | 0.0283 * | ||||||
2022 | T1 | Yes | Farmer | 11.84 | 0.1550 | |||
T2 | 12.66 | 0.1716 | ||||||
T3 | 12.22 | 0.1527 | ||||||
T4 | 13.07 | 0.1733 | ||||||
T5 | No | 13.18 | 0.1616 | |||||
ANOVA | 0.3738 ns | 0.4626 ns | ||||||
Y | <0.0001 *** | <0.0001 *** | ||||||
T | 0.2852 ns | 0.6914 ns | ||||||
Y × T | 0.0387 * | 0.3967 ns | ||||||
2022 Season | Yes | Farmer | 8.82 | 0.1234 | −0.66 | |||
From 49 DAFBs on | Precision | 7.54 | 0.0915 | −0.89 | ||||
No | Farmer | 9.25 | 0.117 | −0.65 | ||||
Precision | 7.12 | 0.0881 | −0.82 | |||||
B | 0.9844 ns | 0.4857 ns | 0.1323 ns | |||||
I | 0.0015 ** | 0.0008 *** | <0.0001 *** | |||||
B × I | 0.3290 ns | 0.8245 ns | 0.2336 ns |
Year | Irrigation | Treatment | Total Yield | Yield I to III | Yield IV to VII |
---|---|---|---|---|---|
(Y) | (I) | (T) | t ha−¹ | t ha−¹ | t ha−¹ |
2021 | Farmer | T1 | 38.12 | 18.41 | 19.71 |
T2 | 43.67 | 21.45 | 22.22 | ||
T3 | 40.56 | 24.21 | 16.35 | ||
T4 | 43.28 | 22.46 | 20.82 | ||
T5 | 39.63 | 18.03 | 21.60 | ||
ANOVA | 0.3165 ns | 0.4096 ns | 0.6193 ns | ||
2022 | Farmer | T1 | 35.67 | 21.76 | 13.91 |
T2 | 37.02 | 20.72 | 16.31 | ||
T3 | 34.67 | 12.85 | 21.82 | ||
T4 | 42.32 | 27.54 | 14.78 | ||
T5 | 35.15 | 24.24 | 10.91 | ||
ANOVA | 0.7943 ns | 0.3050 ns | 0.4215 ns | ||
2022 | Precision | T1 | 39.44 | 33.97 | 5.47 |
T2 | 41.49 | 34.08 | 7.42 | ||
T3 | 44.51 | 40.53 | 3.98 | ||
T4 | 40.50 | 39.53 | 0.97 | ||
T5 | 38.19 | 31.43 | 6.76 | ||
ANOVA | 0.8941 ns | 0.4139 ns | 0.5153 ns | ||
Y | 0.0485 * | 0.8200 ns | 0.0398 * | ||
T | 0.3074 ns | 0.6713 ns | 0.9465 ns | ||
Y × T | 0.8945 ns | 0.1002 ns | 0.2141 ns | ||
2022 | B | 0.6573 ns | 0.4811 ns | 0.1361 ns | |
I | 0.2125 ns | <0.0001 *** | <0.0001 *** | ||
B × I | 0.8870 ns | 0.1995 ns | 0.1409 ns |
Treatment | Sprouting | Full Bloom | Fruit Set to Pea-Sized Berries |
---|---|---|---|
L ha−1 | |||
T1 A: Amalgerol® | 10 | 5 | 5 |
T2 A: Seamac Rhizo® | 5 | 5 | 5 |
T3 A: Accudo® | 1 | 1 | 1 |
T4: Seamac Rhizo® + Accudo® | 4 1 | 4 1 | 4 1 |
T5: Control | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-García, S.; Temnani, A.; Berríos, P.; Marín-Durán, L.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants 2024, 13, 3424. https://doi.org/10.3390/plants13233424
Zapata-García S, Temnani A, Berríos P, Marín-Durán L, Espinosa PJ, Monllor C, Pérez-Pastor A. Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants. 2024; 13(23):3424. https://doi.org/10.3390/plants13233424
Chicago/Turabian StyleZapata-García, Susana, Abdelmalek Temnani, Pablo Berríos, Laura Marín-Durán, Pedro J. Espinosa, Claudia Monllor, and Alejandro Pérez-Pastor. 2024. "Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes" Plants 13, no. 23: 3424. https://doi.org/10.3390/plants13233424
APA StyleZapata-García, S., Temnani, A., Berríos, P., Marín-Durán, L., Espinosa, P. J., Monllor, C., & Pérez-Pastor, A. (2024). Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants, 13(23), 3424. https://doi.org/10.3390/plants13233424