Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil
<p>The structural formula of tripyrasulfone.</p> "> Figure 2
<p>Effect of tripyrasulfone on urease (UE) activity in different soils. Data represent the mean plus or minus standard deviation (<span class="html-italic">n</span> = 3). Different letters indicate significant differences at the <span class="html-italic">p</span> < 0.05 level according to Fisher’s protected LSD test. (<b>A</b>): JL-SY soil; (<b>B</b>): SD-LY soil.</p> "> Figure 3
<p>Effect of tripyrasulfone on sucrase (SC) activity in different soils. Data represent the mean plus or minus standard deviation (<span class="html-italic">n</span> = 3). Different letters indicate significant differences at the <span class="html-italic">p</span> < 0.05 level according to Fisher’s protected LSD test. (<b>A</b>): JL-SY soil; (<b>B</b>): SD-LY soil.</p> "> Figure 4
<p>Effect of tripyrasulfone on catalase (CAT) activity in different soils. Data represent the mean plus or minus standard deviation (<span class="html-italic">n</span> = 3). Different letters indicate significant differences at the <span class="html-italic">p</span> < 0.05 level according to Fisher’s protected LSD test. (<b>A</b>): JL-SY soil; (<b>B</b>): SD-LY soil.</p> "> Figure 5
<p>Effect of tripyrasulfone on dehydrogenases (DHA) activity in different soils. Data represent the mean plus or minus standard deviation (<span class="html-italic">n</span> = 3). Different letters indicate significant differences at the <span class="html-italic">p</span> < 0.05 level according to Fisher’s protected LSD test. (<b>A</b>): JL-SY soil; (<b>B</b>): SD-LY soil.</p> "> Figure 6
<p>Effect of tripyrasulfone on acid phosphatase (ACP) activity in different soils. Data represent the mean plus or minus standard deviation (<span class="html-italic">n</span> = 3). Different letters indicate significant differences at the <span class="html-italic">p</span> < 0.05 level according to Fisher’s protected LSD test. (<b>A</b>): JL-SY soil; (<b>B</b>): SD-LY soil.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of Tripyrasulfone on UE Activity in Paddy Soils
2.2. Effect of Tripyrasulfone on SC Activity in Paddy Soil
2.3. Effect of Tripyrasulfone on CAT Activity in Paddy Soil
2.4. Effect of Tripyrasulfone on DHA Activity in Paddy Soil
2.5. Effect of Tripyrasulfone on ACP Activity in Paddy Soil
3. Discussion
4. Materials and Methods
4.1. Herbicide
4.2. Soil Sampling
4.3. Treatment of Soil Samples with Tripyrasulfone
4.4. Soil UE Activity Assay
4.5. Soil SC Activity Assay
4.6. Soil CAT Activity Assay
4.7. Soil DHA Activity Assay
4.8. Soil ACP Activity Assay
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations Vs. The Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Swanton, C.J.; Nkoa, R.; Blackshaw, R.E. Experimental Methods for Crop–Weed Competition Studies. Weed Sci. 2015, 63, 2–11. [Google Scholar] [CrossRef]
- Trognitz, F.; Hackl, E.; Widhalm, S.; Sessitsch, A. The Role of Plant–Microbiome Interactions in Weed Establishment and Control. FEMS Microbiol. Ecol. 2016, 92, fiw138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; DiTommaso, A.; Zhang, C.; Zheng, G.; Liang, W.; Islam, F.; Yang, C.; Chen, X.; Zhou, W. Weed Research Status, Challenges, and Opportunities in China. Crop Prot. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Gao, W.-T.; Su, W.-H. Weed Management Methods for Herbaceous Field Crops: A Review. Agronomy 2024, 14, 486. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Zhao, K.; Yu, H.; Zhang, J.; Wang, J. Evaluation of Weed Control Efficacy and Crop Safety of the New Hppd-Inhibiting Herbicide-Qyr301. Sci. Rep. 2018, 8, 7910. [Google Scholar] [CrossRef]
- Gianessi, L.P.; Reigner, N.P. The Value of Herbicides in Us Crop Production. Weed Technol. 2007, 21, 559–566. [Google Scholar] [CrossRef]
- Gianessi, L.P. The Increasing Importance of Herbicides in Worldwide Crop Production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Filimon, M.N.; Roman, D.L.; Bordean, D.M.; Isvoran, A. Impact of the Herbicide Oxyfluorfen on the Activities of Some Enzymes Found in Soil and on the Populations of Soil Microorganisms. Agronomy 2021, 11, 1702. [Google Scholar] [CrossRef]
- Saeki, M.; Toyota, K. Effect of Bensulfuron-Methyl (a Sulfonylurea Herbicide) on the Soil Bacterial Community of a Paddy Soil Microcosm. Biol. Fertil. Soils 2004, 40, 110–118. [Google Scholar] [CrossRef]
- Silva, G.S.d.; Melo, C.A.D.; Fialho, C.M.T.; Santos, L.D.T.; Costa, M.D.; Silva, A.A.d. Impact of Sulfentrazone, Isoxaflutole and Oxyfluorfen on the Microorganisms of Two Forest Soils. Bragantia 2014, 73, 292–299. [Google Scholar] [CrossRef]
- Sofo, A.; Scopa, A.; Dumontet, S.; Mazzatura, A.; Pasquale, V. Toxic Effects of Four Sulphonylureas Herbicides on Soil Microbial Biomass. J. Environ. Sci. Health Part B 2012, 47, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, L.; Wang, J.; Xie, H.; Wang, J.; Wang, F.; Sun, F. Effects of Fomesafen on Soil Enzyme Activity, Microbial Population, and Bacterial Community Composition. Environ. Monit. Assess. 2014, 186, 2801–2812. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Scelza, R.; Gianfreda, L. Soil Enzymes. In Enzymes in Agricultural Sciences; OMICS Group eBooks: Foster City, CA, USA, 2014; pp. 10–43. [Google Scholar]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The Biological Activities of B-Glucosidase, Phosphatase and Urease as Soil Quality Indicators: A Review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Yao, X.-H.; Min, H.; Lü, Z.-H.; Yuan, H.-P. Influence of Acetamiprid on Soil Enzymatic Activities and Respiration. Eur. J. Soil Biol. 2006, 42, 120–126. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of Enzyme Activities for the Monitoring of Soil Quality Improvement in Organic Agricultural Systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Koçak, B. Importance of Urease Activity in Soil. In Proceedings of the International Scientific and Vocational Studies Congress–Science and Health, Online, 12–15 December 2020. [Google Scholar]
- Tejada, M.; Morillo, E.; Gómez, I.; Madrid, F.; Undabeytia, T. Effect of Controlled Release Formulations of Diuron and Alachlor Herbicides on the Biochemical Activity of Agricultural Soils. J. Hazard. Mater. 2017, 322, 334–347. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, M.-S.; Kim, J.-G.; Kim, S.-O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Kujur, M.; Kumar Patel, A. Kinetics of Soil Enzyme Activities under Different Ecosystems: An Index of Soil Quality. Chil. J. Agric. Res. 2014, 74, 96–104. [Google Scholar] [CrossRef]
- Datta, A.; Gujre, N.; Gupta, D.; Agnihotri, R.; Mitra, S. Application of Enzymes as a Diagnostic Tool for Soils as Affected by Municipal Solid Wastes. J. Environ. Manag. 2021, 286, 112169. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, J.C.; Sandoval, M.; Pierart, A. Short-Term Response of Soil Enzyme Activities in a Chlorpyrifos-Treated Mesocosm: Use of Enzyme-Based Indexes. Ecol. Indic. 2017, 73, 525–535. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, Y.; Zhu, L.; Zhang, J.; Li, B.; Wang, J.; Wang, J.; Zhang, C.; Cheng, C. Effects of the Herbicide Mesotrione on Soil Enzyme Activity and Microbial Communities. Ecotoxicol. Environ. Saf. 2018, 164, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qiao, Z.; Yao, C.; Sun, S.; Liu, W.; Wang, J. Effects of the Novel Hppd-Inhibitor Herbicide Qym201 on Enzyme Activity and Microorganisms, and Its Degradation in Soil. Ecotoxicology 2021, 30, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Joshi, O.P.; Billore, S.D. Effect of Herbicides on Soil Dehydrogenase and Urease Activity in Soybean (Glycine max). Indian J. Agric. Sci. 2000, 70, 218–219. [Google Scholar]
- García-Pérez, J.A.; Alarcón, E.; Hernández, Y.; Hernández, C. Impact of Litter Contaminated with Glyphosate-Based Herbicide on The Performance of Pontoscolex Corethrurus, Soil Phosphatase Activities and Soil PH. Appl. Soil Ecol. 2016, 104, 31–41. [Google Scholar] [CrossRef]
- Hassan, A.; Hamid, F.S.; Auta, H.S.; Pariatamby, A.; Ossai, I.C.; Barasarathi, J.; Ahmed, A. Microbial Enzymes: Role in Soil Fertility. In Ecological Interplays in Microbial Enzymology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 155–187. [Google Scholar]
- MICUȚI, M.-M.; BĂDULESCU, L.; Burlacu, A.; Israel-Roming, F. Activity of Peroxidase and Catalase in Soils as Influenced by Some Insecticides and Fungicides. AgroLife Sci. J. 2018, 7, 99–104. [Google Scholar]
- Pose-Juan, E.; Sánchez-Martín, M.J.; Herrero-Hernández, E.; Rodríguez-Cruz, M.S. Application of Mesotrione at Different Doses in an Amended Soil: Dissipation and Effect on the Soil Microbial Biomass and Activity. Sci. Total Environ. 2015, 536, 31–38. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Wang, L.; Liu, W.; Wang, J. Baseline Sensitivity of Echinochloa Crus-Galli (L.) P. Beauv. to Tripyrasulfone, a New Hppd-Inhibiting Herbicide, in China. Crop Prot. 2022, 158, 105993. [Google Scholar] [CrossRef]
- Wang, H.; Sun, P.; Zhang, X.; Wang, L.; Guo, W.; Bei, F.; Liu, W.; Wang, J. Method Validation and Dissipation Kinetics of the New Hppd Inhibitor Qyr301 in Rice, Paddy Water and Paddy Soil Using a Quechers-Based Method and Lc-Ms/Ms. Ecotoxicol. Environ. Saf. 2019, 184, 109563. [Google Scholar] [CrossRef]
- Hengzhi, W.; Hao, W.; Baolin, Z.; Lele, Z.; Weitang, L.; Jinxin, W. Herbicidal Characteristics of Herbicide-Qyr301 in Paddy. Chin. J. Pestic. Sci. 2020, 22, 76–81. [Google Scholar]
- Wang, H.; Zhang, X.; Wang, L.; Zhu, B.; Guo, W.; Liu, W.; Wang, J. Biochemical Responses and DNA Damage Induced by Herbicide Qyr301 in Earthworm (Eisenia fetida). Chemosphere 2020, 244, 125512. [Google Scholar] [CrossRef] [PubMed]
- Burrows, L.A.; Edwards, C.A. The Use of Integrated Soil Microcosms to Predict Effects of Pesticides on Soil Ecosystems. Eur. J. Soil Biol. 2002, 38, 245–249. [Google Scholar] [CrossRef]
- Johnsen, K.; Jacobsen, C.S.; Torsvik, V.; Sørensen, J. Pesticide Effects on Bacterial Diversity in Agricultural Soils–a Review. Biol. Fertil. Soils 2001, 33, 443–453. [Google Scholar] [CrossRef]
- Sannino, F.; Gianfreda, L. Pesticide Influence on Soil Enzymatic Activities. Chemosphere 2001, 45, 417–425. [Google Scholar] [CrossRef]
- Satapute, P.; Kamble, M.V.; Adhikari, S.S.; Jogaiah, S. Influence of Triazole Pesticides on Tillage Soil Microbial Populations and Metabolic Changes. Sci. Total Environ. 2019, 651, 2334–2344. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, X.; Peng, J.; Ma, Y.; Ma, Y. Effects of Glyphosate on Soil Enzyme Activities in Cotton Fields. Cotton Sci. 2014, 26, 431–437. [Google Scholar]
- Riah, W.; Laval, K.; Laroche-Ajzenberg, E.; Mougin, C.; Latour, X.; Trinsoutrot-Gattin, I. Effects of Pesticides on Soil Enzymes: A Review. Environ. Chem. Lett. 2014, 12, 257–273. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Q.; Wang, H.; Yao, J.; Chen, L.; Ding, C. Effects of Herbicide Chlorimuron-Ethyl on Activities of 6 Kinds of Enzymes in Soil. Acta Agric. Jiangxi 2014, 26, 29–33. [Google Scholar] [CrossRef]
- Ma, A.; He, R.; Jiang, X.; Lin, Y. Effects of Single and Combined Pollution of Chlorpyrifos and Acetochlor on Soil Enzyme Activity and Microbial Biomass Carbon. J. Ecol. Rural Environ. 2008, 24, 57–60. [Google Scholar]
- Klute, A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; American Society of Agronomy, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Hassan, W.; Chen, W.; Cai, P.; Huang, Q. Estimation of Enzymatic, Microbial, and Chemical Properties in Brown Soil by Microcalorimetry. J. Therm. Anal. Calorim. 2014, 116, 969–988. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, S.; Liu, G.-B.; Song, Z.-L. A Comparison of Soil Qualities of Different Revegetation Types in the Loess Plateau, China. Plant Soil 2011, 347, 163–178. [Google Scholar] [CrossRef]
- Deng, J.; Chong, Y.; Zhang, D.; Ren, C.; Zhao, F.; Zhang, X.; Han, X.; Yang, G. Temporal Variations in Soil Enzyme Activities and Responses to Land-Use Change in the Loess Plateau, China. Appl. Sci. 2019, 9, 3129. [Google Scholar] [CrossRef]
- Stpniewska, Z.; Wolińska, A.; Ziomek, J. Response of Soil Catalase Activity to Chromium Contamination. J. Environ. Sci. 2009, 21, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Temple, K.L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
Physicochemical Characteristics | Soils | |
---|---|---|
JL-SY | SD-LY | |
pH | 5.82 | 7.08 |
Organic matter (g kg−1) | 37.37 | 43.70 |
N (mg kg−1) | 116.38 | 69.25 |
P (mg kg−1) | 58.78 | 195.07 |
K (mg kg−1) | 248.95 | 134.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Sun, H.; Yu, S.; Lian, L.; Jin, T.; Peng, X.; Li, X.; Liu, W.; Wang, H. Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil. Plants 2024, 13, 3138. https://doi.org/10.3390/plants13223138
Sun P, Sun H, Yu S, Lian L, Jin T, Peng X, Li X, Liu W, Wang H. Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil. Plants. 2024; 13(22):3138. https://doi.org/10.3390/plants13223138
Chicago/Turabian StyleSun, Penglei, He Sun, Shuo Yu, Lei Lian, Tao Jin, Xuegang Peng, Xiangju Li, Weitang Liu, and Hengzhi Wang. 2024. "Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil" Plants 13, no. 22: 3138. https://doi.org/10.3390/plants13223138
APA StyleSun, P., Sun, H., Yu, S., Lian, L., Jin, T., Peng, X., Li, X., Liu, W., & Wang, H. (2024). Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil. Plants, 13(22), 3138. https://doi.org/10.3390/plants13223138