The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings
<p>The structural formulas of the main substances of PEO. (<b>A</b>) Linalool; (<b>B</b>) Linalyl formate; (<b>C</b>) α-Terpineol; (<b>D</b>) 2-Hexanoylfuran; (<b>E</b>) Geranyl acetate; (<b>F</b>) Neryl acetate.</p> "> Figure 2
<p>(<b>A</b>) Growth of rice seedlings under different treatments at 7 d. (<b>B</b>) Effects on rice shoot length and fresh weight of different treatments. (<b>C</b>) The growth inhibition rate (GIR) of shoot length and fresh weight of different treatments. (<b>D</b>) The injury recovery rate (IRR) of shoot length and fresh weight of different treatments, where FE is 0.8 mg/L, PEO<sub>1</sub>, PEO<sub>2</sub>, and PEO<sub>3</sub> are 200, 400, and 800 mg/L perilla leaf essential oil (PEO), respectively. For each treatment, the means (±SE; <span class="html-italic">n</span> = 3) that are accompanied by distinct letters indicate a statistically significant difference at <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>The mitigation activity of PEO against the phytotoxicity of seven herbicides. (<b>A</b>) PEO (800 mg/L) alone. (<b>B</b>) <span class="html-italic">s</span>-Metolachlor (30 mg/L). (<b>C</b>) Pretilachlor (1000 mg/L). (<b>D</b>) Pinoxaden (0.4 mg/L). (<b>E</b>) Mesotrione (400 mg/L). (<b>F</b>) Penoxsulam (200 mg/L). (<b>G</b>) Mesosulfuron-methyl (4 mg/L). (<b>H</b>) Nicosulfuron (5 mg/L). There were three treatment groups in B-I: CK, herbicide alone, and herbicide combined with 800 mg/L PEO treatment. For each treatment, the means (±SE; <span class="html-italic">n</span> = 3) that are accompanied by distinct letters indicate a statistically significant difference at <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of PEO
2.2. Activity Assay of Phytotoxicity Mitigation of PEO
2.2.1. The Mitigation Effect of PEO on the Phytotoxicity of FE
2.2.2. The Effect of PEO on the Phytotoxicity of Seven Herbicides
2.3. The Mitigation Effect of Main Components on the Phytotoxicity of FE
2.4. The Mitigation Ability of 2-Hexanoylfuran to Phytotoxicity of FE
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Rice Cultivation and Growth Bioassays
4.3. Assay Methods for Mitigation Activity of Phytotoxicity
4.3.1. Determination of the Mitigation Activity of PEO Against the Phytotoxicity of FE
4.3.2. Determination of the Mitigation Activity of PEO Against the Phytotoxicity of Eight Herbicides
4.3.3. Determination of the Mitigation Activity of Six Compounds Against the Phytotoxicity of FE
4.3.4. Effect of 2-Hexanoylfuran on FE Tolerance in Rice
4.4. Chemical Analysis of PEO
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, X.; Zheng, W.; Jin, C.; Zhan, Q.; Bai, L. Novel phenylpyrimidine derivatives containing a hydrazone moiety protect rice seedlings from injury by metolachlor. Bioorg. Chem. 2021, 108, 104645. [Google Scholar] [CrossRef] [PubMed]
- Lanasa, S.; Niedzwiecki, M.; Reber, K.P.; East, A.; Sivey, J.D.; Salice, C.J. Comparative Toxicity of Herbicide Active Ingredients, Safener Additives, and Commercial Formulations to the Nontarget Alga Raphidocelis subcapitata. Environ. Toxicol. Chem. 2022, 41, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Deng, X.; Bai, L. Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor. Sci. Total Environ. 2021, 761, 143273. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Deng, X.; Zhou, X.; Bai, L. Assessing the toxicity of three “inert” herbicide safeners toward Danio rerio: Effects on embryos development. Ecotox. Environ. Safe 2021, 207, 111576. [Google Scholar] [CrossRef]
- Deng, X. A Mini Review on Natural Safeners: Chemistry, Uses, Modes of Action, and Limitations. Plants 2022, 11, 3509. [Google Scholar] [CrossRef]
- Leng, X.-Y.; Zhao, L.-X.; Gao, S.; Ye, F.; Fu, Y. Review on the Discovery of Novel Natural Herbicide Safeners. J. Agr. Food Chem. 2023, 71, 11320–11331. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P. Cymbopogon citratus Allelochemical Volatiles as Potential Biopesticides against the Pinewood Nematode. Plants 2024, 13, 2233. [Google Scholar] [CrossRef]
- Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The Structure and Function of Major Plant Metabolite Modifications. Mol. Plant 2019, 12, 899–919. [Google Scholar] [CrossRef]
- Jia, L.; Jin, X.-Y.; Zhao, L.-X.; Fu, Y.; Ye, F. Research Progress in the Design and Synthesis of Herbicide Safeners: A Review. J. Agr. Food Chem. 2022, 70, 5499–5515. [Google Scholar] [CrossRef]
- Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules 2022, 27, 3578. [Google Scholar] [CrossRef]
- Jiang, T.; Guo, K.; Liu, L.; Tian, W.; Xie, X.; Wen, S.; Wen, C. Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves. Sci. Rep. 2020, 10, 16207. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, Y.; Huang, J.; Gu, H.; Li, C.; Zhang, L.; Liu, G.; Zhou, W.; Du, Z. The Essential Oil Derived from Perilla frutescens (L.) Britt. Attenuates Imiquimod-Induced Psoriasis-like Skin Lesions in BALB/c Mice. Molecules 2022, 27, 2996. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yeo, H.J.; Lee, S.Y.; Kim, S.R.; Park, S.U.; Park, C.H. The Effect of Light and Dark Treatment on the Production of Rosmarinic Acid and Biological Activities in Perilla frutescens Microgreens. Plants 2023, 12, 1613. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, H.; Lu, X.; Wu, Y.; Blasi, F. The Inhibitory Effect of Chitosan Based Films, Incorporated with Essential Oil of Perilla frutescens Leaves, against Botrytis cinerea during the Storage of Strawberries. Processes 2022, 10, 706. [Google Scholar] [CrossRef]
- Dong, Z.-X.; Wang, Y.-W.; Liu, Q.-Z.; Tian, B.-L.; Liu, Z.-L. Laboratory Screening of 26 Essential Oils Against Cacopsylla chinensis (Hemiptera: Psyllidae) and Field Confirmation of the Top Performer, Perilla frutescens (Lamiales: Lamiaceae). J. Econ. Entomol. 2019, 112, 1299–1305. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, J.; Tao, F.; Chen, Y.; Ding, H. The effect of terrain factors on rice production: A case study in Hunan Province. J. Geogr. Sci. 2019, 29, 287–305. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Phuong, L.T.; Denich, M.; Vlek, P.L.G.; Balasubramanian, V. Suppressing weeds in direct-seeded lowland rice: Effects of methods and rates of seeding. J. Agr. Crop Sci. 2005, 191, 185–194. [Google Scholar] [CrossRef]
- Deng, W.; Li, Y.; Yao, S.; Duan, Z.; Yang, Q.; Yuan, S. ACCase gene mutations and P450-mediated metabolism contribute to cyhalofop-butyl resistance in Eleusine indica biotypes from direct-seeding paddy fields. Pestic. Biochem. Phys. 2023, 194, 105530. [Google Scholar] [CrossRef]
- Wei, S.; Li, P.; Ji, M.; Dong, Q.; Wang, H. Target-site resistance to bensulfuron-methyl in Sagittaria trifolia L. populations. Pestic. Biochem. Phys. 2015, 124, 81–85. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Ren, Y.; Liu, Y.; Feng, Z.; Dong, L. Mechanism of multiple resistance to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon in Avena fatua L. from China. Pestic. Biochem. Phys. 2024, 203, 105985. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.X.; Zhang, Y.; Wang, K.; Zhang, H.Y. Residue analysis and dissipation of fenoxaprop-P-ethyl and its metabolite fenoxaprop-P in rice ecosystem. J. Anal. Chem. 2015, 70, 897–902. [Google Scholar] [CrossRef]
- Sun, L.; Ma, R.; Xu, H.; Su, W.; Xue, F.; Wu, R.; Lu, C. Protective mechanisms of neral as a plant-derived safener against fenoxaprop-p-ethyl injury in rice. Pest. Manag. Sci. 2024, 80, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, W.; Sun, L.; Xu, H.; Su, W.; Xue, F.; Wu, R.; Lu, C. Transcriptome analysis and the identification of genes involved in the metabolic pathways of fenoxaprop-P-ethyl in rice treated with isoxadifen-ethyl hydrolysate. Pestic. Biochem. Phys. 2022, 183, 105057. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, F.; Fu, Y. Herbicide Safeners: From Molecular Structure Design to Safener Activity. J. Agr. Food Chem. 2024, 72, 2451–2466. [Google Scholar] [CrossRef]
- Deng, X. Current Advances in the Action Mechanisms of Safeners. Agronomy 2022, 12, 2824. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, X.; Wu, J.; Li, J.; Bai, L. A novel function of sanshools: The alleviation of injury from metolachlor in rice seedlings. Pestic. Biochem. Phys. 2014, 110, 44–49. [Google Scholar] [CrossRef]
- Brazier-Hicks, M.; Knight, K.M.; Sellars, J.D.; Steel, P.G.; Edwards, R. Testing a chemical series inspired by plant stress oxylipin signalling agents for herbicide safening activity. Pest. Manag. Sci. 2018, 74, 828–836. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, F.; Fu, Y. Research Progress on the Action Mechanism of Herbicide Safeners: A Review. J. Agr. Food Chem. 2023, 71, 3639–3650. [Google Scholar] [CrossRef]
- Da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- Ghimire, B.K.; Yoo, J.H.; Yu, C.Y.; Chung, I.-M. GC–MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability. Asian Pac. J. Trop. Med. 2017, 10, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Volatile oil composition of Indian Perilla [Perilla frutescens (L.) Britton] collected at different phenophases. J. Essent. Oil Res. 2013, 25, 92–96. [Google Scholar] [CrossRef]
- Dimita, R.; Allah, S.M.; Luvisi, A.; Greco, D.; De Bellis, L.; Accogli, R.; Mininni, C.; Negro, C. Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages. Horticulturae 2022, 8, 71. [Google Scholar] [CrossRef]
- Gao, L.; Wei, Y.; Li, K.; Chen, J.; Wang, P.; Du, J.; Peng, J.; Gao, Y.; Zhang, Z.; Liu, Y.; et al. Perilla frutescens repels and controls Bemisia tabaci MED with its key volatile linalool and caryophyllene. Crop Prot. 2024, 184, 106837. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhang, J. Comparison of MAHD with UAE and Hydrodistillation for the Analysis of Volatile Oil from Four Parts of Perilla frutescens Cultivated in Southern China. Anal. Lett. 2012, 45, 1894–1909. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lü, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crop. Prod. 2014, 59, 69–79. [Google Scholar] [CrossRef]
- de Macedo, A.R.S.; de Oliveira, J.F.A.; Sommerfeld, S.; Notário, F.O.; Martins, M.M.; Bastos, L.M.; Bezerra, B.G.P.; Lisboa, L.d.S.; Rocha, H.A.O.; Araujo, R.M.; et al. Unlocking the power of Libidibia ferrea extracts: Antimicrobial, antioxidant, and protective properties for potential use in poultry production. Poultry Sci. 2024, 103, 103668. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Zheng, J.; Xu, J.; Wang, H.; Du, J.; Zhou, D.; Sun, Y.; Shen, B. Toxic Effects of Perilla frutescens (L.) Britt. Essential Oil and Its Main Component on Culex pipiens pallens (Diptera: Culicidae). Plants 2023, 12, 1516. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, W.; Zhan, Q.; Deng, Y.; Zhou, Y.; Bai, L. New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy. Molecules 2020, 25, 4986. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Su, W.; Sun, L.; Xu, H.; Xue, F.; Lu, C.; Wu, R. The mechanism of exogenous gibberellin A3 protecting sorghum shoots from S-metolachlor Phytotoxicity. Pest. Manag. Sci. 2022, 78, 4497–4506. [Google Scholar] [CrossRef]
- Xing, H.; Lin, J.; Li, X.; Huang, J.; Liang, X.; Li, Y.; Bai, M.; He, H.; Lin, F.; Xu, H.; et al. Changes in dopamine and octopamine levels caused disordered behaviour in red imported fire ants exposed to cinnamon essential oils. Ind. Crop. Prod. 2023, 199, 116801. [Google Scholar] [CrossRef]
No. | Retention Time | Relative Content (%) | Constituents | CAS No. |
---|---|---|---|---|
1 | 6.100 | 1.09% | β-Pinene | 127-91-3 |
2 | 6.838 | 0.54% | Limonene | 5989-27-5 |
3 | 6.883 | 0.66% | trans-β-ocimene | 3779-61-1 |
4 | 7.065 | 0.97% | cis-β-ocimene | 3338-55-4 |
5 | 7.769 | 0.45% | Terpinolene | 586-62-9 |
6 | 7.960 | 36.49% | Linalool | 78-70-6 |
7 | 9.373 | 10.63% | α-Terpineol | 10482-56-1 |
8 | 9.650 | 1.22% | Nerol | 106-25-2 |
9 | 9.873 | 26.96% | Linalyl formate | 115-99-1 |
10 | 9.912 | 1.48% | Geraniol | 106-24-1 |
11 | 9.943 | 5.81% | 2-Hexanoylfuran | 14360-50-0 |
12 | 10.459 | 1.18% | Unknown | - |
13 | 10.917 | 2.30% | Neryl acetate | 141-12-8 |
14 | 11.082 | 4.13% | Geranyl acetate | 105-87-3 |
15 | 11.171 | 0.35% | α-Cubebene | 17699-14-8 |
16 | 11.256 | 0.36% | β-Bourbonene | 5208-59-3 |
17 | 11.428 | 0.19% | Caryophyllene | 13877-93-5 |
18 | 11.564 | 1.49% | β-Caryophyllene | 87-44-5 |
19 | 11.847 | 0.14% | α-Caryophyllene | 6753-98-6 |
20 | 11.951 | 0.29% | α-Bergamotene | 17699-05-7 |
21 | 12.024 | 0.43% | β-copaene | 317819-78-6 |
22 | 12.241 | 0.25% | δ-Cadinene | 483-76-1 |
23 | 12.771 | 0.49% | Caryophyllene oxide | 1139-30-6 |
24 | 13.983 | 1.22% | Isopropyl myristate | 110-27-0 |
25 | 14.635 | 0.87% | Unknown | - |
Total | 100% |
Compound | IRR (Shoot Length) (%) | IRR (Fresh Weight) (%) |
---|---|---|
2-Hexanoylfuran | 73.17 ± 5.31 a | 73.02 ± 4.86 a |
Geranyl acetate | 72.32 ± 6.38 a | 60.56 ± 2.92 b |
Neryl acetate | 65.28 ± 2.28 a | 58.11 ± 1.03 b |
Linalool | 31.36 ± 1.89 b | 37.81 ± 1.64 c |
α-Terpineol | 13.49 ± 0.94 c | 19.69 ± 0.90 d |
Treatments a | Target | GR50 (mg/L) b | Regression Equation | R2 c | RI d |
---|---|---|---|---|---|
FE | Shoot length | 0.38 | y = 2.6262x + 6.0946 | 0.9795 | |
Fresh weight | 0.40 | y = 2.5943x + 6.035 | 0.9767 | ||
FE + 2-hexanoylfuran | Shoot length | 2.04 | y = 1.4445x + 4.5536 | 0.9799 | 5.32 |
Fresh weight | 2.13 | y = 1.4241x + 4.5313 | 0.9808 | 5.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhu, Y.; Sun, L.; Xu, H.; Su, W.; Xue, F.; Lu, C.; Tang, W.; Wu, R. The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings. Plants 2024, 13, 2946. https://doi.org/10.3390/plants13202946
Li J, Zhu Y, Sun L, Xu H, Su W, Xue F, Lu C, Tang W, Wu R. The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings. Plants. 2024; 13(20):2946. https://doi.org/10.3390/plants13202946
Chicago/Turabian StyleLi, Jiuying, Yinghui Zhu, Lanlan Sun, Hongle Xu, Wangcang Su, Fei Xue, Chuantao Lu, Wenwei Tang, and Renhai Wu. 2024. "The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings" Plants 13, no. 20: 2946. https://doi.org/10.3390/plants13202946
APA StyleLi, J., Zhu, Y., Sun, L., Xu, H., Su, W., Xue, F., Lu, C., Tang, W., & Wu, R. (2024). The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings. Plants, 13(20), 2946. https://doi.org/10.3390/plants13202946