The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response
<p><b>Chemical structure of two of the most common iron–sulfur clusters:</b> the 2Fe-2S (<b>A</b>) and the 4Fe-4S (<b>B</b>) clusters. These iron–sulfur clusters have been present in life since the ancient stages of evolution. Iron is abundantly present in metalloproteins as part of these iron–sulfur clusters, which play a crucial role in cellular redox reactions.</p> "> Figure 2
<p><b>Bacterial iron homeostasis.</b> The ferric and ferrous iron uptake pathways are independent in nature but markedly interdependent in regulation. Under high intracellular iron, the Holo Fur (Fur–Fe<sup>2+</sup> complex) binds to the regulatory sites of iron uptake genes and turns off their expression. When intracellular iron levels are low, the Holo Fur releases the Fe<sup>2+</sup> iron, and it turns into Apo Fur (Fur alone). The Apo Fur loses the ability to bind to regulatory sites, which makes the regulatory sites free from Fur and enables the expression of iron uptake genes. Bacteria synthesize ferric iron-chelating compounds, siderophores, and release them into the extracellular milieu to sequester ferric iron. The TonB-dependent outer membrane receptors recognize the Fe<sup>3</sup>+–siderophore complex, causing a conformational change in the plug domain of the receptor’s channel to internalize it. ExbB and ExbD energize TonB using an electrochemical charge gradient along the cytoplasmic membrane to release the Fe<sup>3+</sup>–siderophore complex into the periplasmic space. Further, periplasmic-binding proteins deliver the complex to the cognate ABC transporter to transport it into the cytoplasm. The ferrous iron is transported to the periplasm by Fe<sup>2+</sup>-specific porins. The glucan–Fe<sup>2+</sup> complex can also bring ferrous iron to the periplasmic space. Further, the FeoB complex (FeoABC) transporter transports the ferrous iron to the cytoplasm. The outer membrane and cytoplasmic ferric reductases reduce ferric iron to ferrous iron at their respective places. Abbreviations: R = receptor; G = glucan; PBP = periplasmic-binding protein; EM = extracellular moiety; OM = outer membrane; P = periplasm; CM = cytoplasmic membrane; C = cytoplasm.</p> "> Figure 3
<p><b>Iron in plant–phytopathogenic bacterial interactions.</b> The host and phytopathogenic bacteria compete for iron resources during the in planta infection process and colonization. Plants limit the availability of iron for bacterial pathogens by transporting iron into the vacuole and sequestering it into ferritins. This results in low-iron conditions for bacteria, which trigger the induced expression of iron uptake genes and siderophore biosynthesis to obtain iron from the iron-depleted host environment. Low-iron conditions also induce bacterial motility and chemotaxis, as well as the expression of virulence genes, T3SS, and effectors. However, the response to low iron varies among bacterial pathogens. PAMP-induced PTI and effector-triggered ETI can cause the HR, which restricts bacterial growth. The siderophore pseudobactin has also been reported as a potential PAMP in <span class="html-italic">Arabidopsis</span>. Excess iron generates ROS via Fenton’s reaction, which triggers programmed cell death at low levels and necrosis at a threshold level.</p> ">
Abstract
:1. Introduction
2. Mechanistic Insights into Phytopathogenic Bacterial Iron Homeostasis and Virulence
2.1. Microbial Iron Acquisition and Virulence
2.2. Phytopathogenic Microbial Iron Storage and Virulence
2.3. Transcription Regulation of Phytopathogenic Microbial Iron Homeostasis and Virulence
2.4. sRNA-Mediated Regulation of Microbial Iron Homeostasis
3. Interplay between Iron Homeostasis and Plant Immune Response
3.1. Bacterial Effectors Influencing Plant Iron Homeostasis
3.2. Plant Immune Response Influencing Microbial Iron Homeostasis
3.3. Iron Availability Influencing Microbial Pathogenicity and Plant Immune Response
3.4. Ferroptotic Cell Death (FCD)
4. Future Perspectives
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frey, P.A.; Reed, G.H. The Ubiquity of Iron. ACS Chem. Biol. 2012, 7, 1477–1481. [Google Scholar] [CrossRef]
- Harel, A.; Bromberg, Y.; Falkowski, P.G.; Bhattacharya, D. Evolutionary History of Redox Metal-Binding Domains across the Tree of Life. Proc. Natl. Acad. Sci. USA 2014, 111, 7042–7047. [Google Scholar] [CrossRef] [PubMed]
- Kosman, D.J. Redox Cycling in Iron Uptake, Efflux, and Trafficking. J. Biol. Chem. 2010, 285, 26729–26735. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, K.; Hase, T.; Matsumoto, S.; Tsukihara, T.; Katsube, Y.; Tanaka, N.; Kakudo, M.; Wada, K.; Matsubara, H. Structure of S. Platensis [2Fe-2S] Ferredoxin and Evolution of Chloroplast-Type Ferredoxins. Nature 1980, 286, 522–524. [Google Scholar] [CrossRef]
- Cammack, R. Evolution and Diversity in the Iron-Sulphur Proteins. Chem. Scr. 1983, 22, 87–95. [Google Scholar]
- Meyer, J. Iron-Sulfur Protein Folds, Iron-Sulfur Chemistry, and Evolution. J. Biol. Inorg. Chem. 2008, 13, 157–170. [Google Scholar] [CrossRef]
- Jordan, S.F.; Ioannou, I.; Rammu, H.; Halpern, A.; Bogart, L.K.; Ahn, M.; Vasiliadou, R.; Christodoulou, J.; Maréchal, A.; Lane, N. Spontaneous Assembly of Redox-Active Iron-Sulfur Clusters at Low Concentrations of Cysteine. Nat. Commun. 2021, 12, 5925. [Google Scholar] [CrossRef]
- Wollman, F.A.; Minai, L.; Nechushtai, R. The Biogenesis and Assembly of Photosynthetic Proteins in Thylakoid Membranes. Biochim. Biophys. Acta-Bioenerg. 1999, 1411, 21–85. [Google Scholar] [CrossRef]
- Roschzttardtz, H.; Grillet, L.; Isaure, M.P.; Conéjéro, G.; Ortega, R.; Curie, C.; Mari, S. Plant Cell Nucleolus as a Hot Spot for Iron. J. Biol. Chem. 2011, 286, 27863–27866. [Google Scholar] [CrossRef]
- Hirayama, T.; Inden, M.; Tsuboi, H.; Niwa, M.; Uchida, Y.; Naka, Y.; Hozumi, I.; Nagasawa, H. A Golgi-Targeting Fluorescent Probe for Labile Fe(Ii) to Reveal an Abnormal Cellular Iron Distribution Induced by Dysfunction of VPS35. Chem. Sci. 2019, 10, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Kurz, T.; Terman, A.; Gustafsson, B.; Brunk, U.T. Lysosomes in Iron Metabolism, Ageing and Apoptosis. Histochem. Cell Biol. 2008, 129, 389–406. [Google Scholar] [CrossRef]
- Kobayashi, T.; Itai, R.N.; Aung, M.S.; Senoura, T.; Nakanishi, H.; Nishizawa, N.K. The Rice Transcription Factor IDEF1 Directly Binds to Iron and Other Divalent Metals for Sensing Cellular Iron Status. Plant J. 2012, 69, 81–91. [Google Scholar] [CrossRef]
- Schwartz, C.J.; Giel, J.L.; Patschkowski, T.; Luther, C.; Ruzicka, F.J.; Beinert, H.; Kiley, P.J. IscR, an Fe-S Cluster-Containing Transcription Factor, Represses Expression of Escherichia coli Genes Encoding Fe-S Cluster Assembly Proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 14895–14900. [Google Scholar] [CrossRef]
- Pandey, S.S.; Patnana, P.K.; Lomada, S.K.; Tomar, A.; Chatterjee, S. Co-Regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas. PLoS Pathog. 2016, 12, e1006019. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Q.; Liu, Z.; Zhang, M.; Machado, A.C.D.; Chiu, T.P.; Feng, C.; Zhang, Q.; Yu, L.; Qi, L.; et al. Mechanistic Insights into Metal Ion Activation and Operator Recognition by the Ferric Uptake Regulator. Nat. Commun. 2015, 6, 7642. [Google Scholar] [CrossRef] [PubMed]
- Volbeda, A.; Dodd, E.L.; Darnault, C.; Crack, J.C.; Renoux, O.; Hutchings, M.I.; Le Bru, N.E.; Fontecilla-Camps, J.C. Crystal Structures of the NO Sensor NsrR Reveal How Its Iron-Sulfur Cluster Modulates DNA Binding. Nat. Commun. 2017, 8, 15052. [Google Scholar] [CrossRef]
- Wilson, M.E.; Britigan, B.E. Iron Acquisition by Parasitic Protozoa. Parasitol. Today 1998, 14, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Drakesmith, H.; Prentice, A. Viral Infection and Iron Metabolism. Nat. Rev. Microbiol. 2008, 6, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Bairwa, G.; Hee Jung, W.; Kronstad, J.W. Iron Acquisition in Fungal Pathogens of Humans. Metallomics 2017, 9, 215–227. [Google Scholar] [CrossRef]
- Rodriguez, G.M.; Sharma, N.; Biswas, A.; Sharma, N. The Iron Response of Mycobacterium Tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics. Front. Cell. Infect. Microbiol. 2022, 12, 876667. [Google Scholar] [CrossRef]
- Soares, M.P.; Weiss, G. The Iron Age of Host—Microbe Interactions. EMBO Rep. 2015, 16, 1482–1500. [Google Scholar] [CrossRef]
- Aznar, A.; Chen, N.W.G.; Thomine, S.; Dellagi, A. Immunity to Plant Pathogens and Iron Homeostasis. Plant Sci. 2015, 240, 90–97. [Google Scholar] [CrossRef]
- Verbon, E.H.; Trapet, P.L.; Stringlis, I.A.; Kruijs, S.; Bakker, P.A.H.M.; Pieterse, C.M.J. Iron and Immunity. Annu. Rev. Phytopathol. 2017, 55, 355–375. [Google Scholar] [CrossRef]
- Herlihy, J.H.; Long, T.A.; McDowell, J.M. Iron Homeostasis and Plant Immune Responses: Recent Insights and Translational Implications. J. Biol. Chem. 2020, 295, 13444–13457. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.S.; Chatterjee, S. Insights into the Cell-Cell Signaling and Iron Homeostasis in Xanthomonas Virulence and Lifestyle. Phytopathology 2022, 112, 209–218. [Google Scholar] [CrossRef]
- Expert, D.; Enard, C.; Masclaux, C. The Role of Iron in Plant Host-Pathogen Interactions. Trends Microbiol. 1996, 4, 232–237. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, D.; Wu, H.L.; Ling, H.Q. Iron in Plant-Pathogen Interactions. J. Exp. Bot. 2021, 72, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Bleuel, C.; Große, C.; Taudte, N.; Scherer, J.; Wesenberg, D.; Krauß, G.J.; Nies, D.H.; Grass, G. TolC Is Involved in Enterobactin Efflux across the Outer Membrane of Escherichia coli. J. Bacteriol. 2005, 187, 6701–6707. [Google Scholar] [CrossRef]
- Furrer, J.L.; Sanders, D.N.; Hook-Barnard, I.G.; McIntosh, M.A. Export of the Siderophore Enterobactin in Escherichia coli: Involvement of a 43 KDa Membrane Exporter. Mol. Microbiol. 2002, 44, 1225–1234. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef] [PubMed]
- Higgs, P.I.; Myers, P.S.; Postle, K. Interactions in the TonB-Dependent Energy Transduction Complex: ExbB and ExbD Form Homomultimers. J. Bacteriol. 1998, 180, 6031–6038. [Google Scholar] [CrossRef] [PubMed]
- Braun, V. Energy-coupled Transport and Signal Transduction through the Gram-negative Outer Membrane via TonB-ExbB-ExbD-dependent Receptor Proteins. FEMS Microbiol. Rev. 1995, 16, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Javvadi, S.; Pandey, S.S.; Mishra, A.; Pradhan, B.B.; Chatterjee, S. Bacterial Cyclic Β-(1,2)-glucans Sequester Iron to Protect against Iron-induced Toxicity. EMBO Rep. 2018, 19, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Hantke, K. Is the Bacterial Ferrous Iron Transporter FeoB a Living Fossil? Trends Microbiol. 2003, 11, 192–195. [Google Scholar] [CrossRef]
- Kammler, M.; Schön, C.; Hantke, K. Characterization of the Ferrous Iron Uptake System of Escherichia coli. J. Bacteriol. 1993, 175, 6212–6219. [Google Scholar] [CrossRef]
- Marlovits, T.C.; Haase, W.; Herrmann, C.; Aller, S.G.; Unger, V.M. The Membrane Protein FeoB Contains an Intramolecular G Protein Essential for Fe(II) Uptake in Bacteria. Proc. Natl. Acad. Sci. USA 2002, 99, 16243–16248. [Google Scholar] [CrossRef]
- Weaver, E.A.; Wyckoff, E.E.; Mey, A.R.; Morrison, R.; Payne, S.M. FeoA and FeoC Are Essential Components of the Vibrio Cholerae Ferrous Iron Uptake System, and FeoC Interacts with FeoB. J. Bacteriol. 2013, 195, 4826–4835. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, B.; Wyckoff, E.E.; Payne, S.M. Vibrio Cholerae FeoA, FeoB, and FeoC Interact to Form a Complex. J. Bacteriol. 2016, 198, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Janakiraman, A.; Slauch, J.M. The Putative Iron Transport System SitABCD Encoded on SPI1 Is Required for Full Virulence of Salmonella Typhimurium. Mol. Microbiol. 2000, 35, 1146–1155. [Google Scholar] [CrossRef]
- Bearden, S.W.; Perry, R.D. The Yfe System of Yersinia Pestis Transports Iron and Manganese and Is Required for Full Virulence of Plague. Mol. Microbiol. 1999, 32, 403–414. [Google Scholar] [CrossRef]
- Angerer, A.; Gaisser, S.; Braun, V. Nucleotide Sequences of the SfuA, SjiiB, and SfiC Genes of Serratia Marcestens Suggest a Periplasmic-Binding Protein-Dependent Iron Transport Mechanism. J. Bacteriol. 1990, 172, 572–578. [Google Scholar] [CrossRef]
- Kehres, D.G.; Janakiraman, A.; Slauch, J.M.; Maguire, M.E. SitABCD Is the Alkaline Mn2+ Transporter of Salmonella Enterica Serovar Typhimurium. J. Bacteriol. 2002, 184, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Berish, S.A.; Nowalk, A.J.; Veraldi, K.L.; Morse, S.A.; Mietzner, T.A. The FbpABC Locus of Neisseria Gonorrhoeae Functions in the Periplasm-to-Cytosol Transport of Iron. J. Bacteriol. 1996, 178, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Cowart, R.E. Reduction of Iron by Extracellular Iron Reductases: Implications for Microbial Iron Acquisition. Arch. Biochem. Biophys. 2002, 400, 273–281. [Google Scholar] [CrossRef]
- Schröder, I.; Johnson, E.; De Vries, S. Microbial Ferric Iron Reductases. FEMS Microbiol. Rev. 2003, 27, 427–447. [Google Scholar] [CrossRef]
- Sedláček, V.; van Spanning, R.J.M.; Kučera, I. Ferric Reductase A Is Essential for Effective Iron Acquisition in Paracoccus Denitrificans. Microbiology 2009, 155, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial Iron Homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, P.; Andrews, S.C. Iron Uptake and Homeostasis in Microorganisms; Cornelis, P., Andrews, S.C., Eds.; Caister Academic Press: Norfolk, UK, 2010; ISBN 1904455654. [Google Scholar]
- Krewulak, K.D.; Vogel, H.J. Structural Biology of Bacterial Iron Uptake. Biochim. Biophys. Acta 2008, 1778, 1781–1804. [Google Scholar] [CrossRef]
- Chu, B.C.; Garcia-Herrero, A.; Johanson, T.H.; Krewulak, K.D.; Lau, C.K.; Peacock, R.S.; Slavinskaya, Z.; Vogel, H.J. Siderophore Uptake in Bacteria and the Battle for Iron with the Host; a Bird’s Eye View. BioMetals 2010, 23, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Enard, C.; Diolez, A.; Expert, D. Systemic Virulence of Erwinia Chrysanthemi 3937 Requires a Functional Iron Assimilation System. J. Bacteriol. 1988, 170, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Franza, T.; Mahé, B.; Expert, D. Erwinia Chrysanthemi Requires a Second Iron Transport Route Dependent of the Siderophore Achromobactin for Extracellular Growth and Plant Infection. Mol. Microbiol. 2005, 55, 261–275. [Google Scholar] [CrossRef]
- Liu, L.; Gueguen-Chaignon, V.; Gonçalves, I.R.; Rascle, C.; Rigault, M.; Dellagi, A.; Loisel, E.; Poussereau, N.; Rodrigue, A.; Terradot, L.; et al. A Secreted Metal-Binding Protein Protects Necrotrophic Phytopathogens from Reactive Oxygen Species. Nat. Commun. 2019, 10, 4853. [Google Scholar] [CrossRef] [PubMed]
- Dellagi, A.; Brisset, M.N.; Paulin, J.P.; Expert, D. Dual Role of Desferrioxamine in Erwinia Amylovora Pathogenicity. Mol. Plant. Microbe. Interact. 1998, 11, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Müller, D.C.; Kammerecker, S.; Fluri, M.; Neutsch, L.; Emsermann, M.R.; Pelludat, C. Priority Effects in the Apple Flower Determine If the Siderophore Desferrioxamine Is a Virulence Factor for Erwinia Amylovora CFBP1430. Appl. Environ. Microbiol. 2022, 88, e02433-21. [Google Scholar] [CrossRef]
- Bull, C.T.; Carnegie, S.R.; Loper, J.E. Pathogenicity of Mutants of Erwinia Carotovora Subsp. Carotovora Deficient in Aerobactin and Catecholate Siderophore Production. Mol. Plant Pathol. 1996, 86, 260–266. [Google Scholar]
- Barnes, H.H.; Ishimaru, C.A. Purification of Catechol Siderophores by Boronate Affinity Chromatography: Identification of Chrysobactin from Erwinia Carotovora Subsp. Carotovora. BioMetals 1999, 12, 83–87. [Google Scholar] [CrossRef]
- Taguchi, F.; Suzuki, T.; Inagaki, Y.; Toyoda, K.; Shiraishi, T.; Ichinose, Y. The Siderophore Pyoverdine of Pseudomonas Syringae Pv. Tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection. J. Bacteriol. 2010, 192, 117–126. [Google Scholar] [CrossRef]
- Owen, J.G.; Ackerley, D.F. Characterization of Pyoverdine and Achromobactin in Pseudomonas Syringae Pv. Phaseolicola 1448a. BMC Microbiol. 2011, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Sonti, R.V. Role of the FeoB Protein and Siderophore in Promoting Virulence of Xanthomonas Oryzae Pv. Oryzae on Rice. J. Bacteriol. 2010, 192, 3187–3203. [Google Scholar] [CrossRef]
- Pandey, S.S.; Patnana, P.K.; Rai, R.; Chatterjee, S. Xanthoferrin, the α-Hydroxycarboxylate-Type Siderophore of Xanthomonas Campestris Pv. Campestris, Is Required for Optimum Virulence and Growth inside Cabbage. Mol. Plant Pathol. 2017, 18, 949–962. [Google Scholar] [CrossRef]
- Tanabe, T.; Funahashi, T.; Nakao, H.; Miyoshi, S.; Shinoda, S.; Yamamoto, S. Identification and Characterization of Genes Required for Biosynthesis and Transport of the Siderophore Vibrioferrin in Vibrio Parahaemolyticus Identification and Characterization of Genes Required for Biosynthesis and Transport of the Siderophore Vibriof. J. Bacteriol. 2003, 185, 6938–6949. [Google Scholar] [CrossRef] [PubMed]
- An, S.-Q.; Potnis, N.; Dow, M.; Vorhölter, F.-J.; He, Y.-Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic Insights into Host Adaptation, Virulence and Epidemiology of the Phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2019, 44, 1–32. [Google Scholar] [CrossRef]
- Pandey, S.S.; Singh, P.; Samal, B.; Verma, R.K.; Chatterjee, S. Xanthoferrin Siderophore Estimation from the Cell-Free Culture Supernatants of Different Xanthomonas Strains by HPLC. Bioprotocol 2017, 7, e2410. [Google Scholar] [CrossRef]
- Rai, R.; Javvadi, S.; Chatterjee, S. Cell-Cell Signaling Promotes Ferric Iron Uptake in Xanthomonas Oryzae Pv. Oryzicola That Contribute to Its Virulence and Growth inside Rice. Mol. Microbiol. 2015, 96, 708–727. [Google Scholar] [CrossRef]
- Rondon, M.R.; Ballering, K.S.; Thomas, M.G. Identification and Analysis of a Siderophore Biosynthetic Gene Cluster from Agrobacterium Tumefaciens C58. Microbiology 2004, 150, 3857–3866. [Google Scholar] [CrossRef]
- Jones, A.M.; Wildermuth, M.C. The Phytopathogen Pseudomonas Syringae Pv. Tomato DC3000 Has Three High-Affinity Iron-Scavenging Systems Functional under Iron Limitation Conditions but Dispensable for Pathogenesis. J. Bacteriol. 2011, 193, 2767–2775. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, G.; Denny, T.P. Ralstonia Solanacearum Iron Scavenging by the Siderophore Staphyloferrin B Is Controlled by PhcA, the Global Virulence Regulator. J. Bacteriol. 2004, 186, 7896–7904. [Google Scholar] [CrossRef]
- Neema, C.; Laulhère, J.P.; Expert, D. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia Chrysanthemi. Plant Physiol. 1993, 102, 967–973. [Google Scholar] [CrossRef]
- Ishimaru, C.A.; Loper, J.E. High-Affinity Iron Uptake Systems Present in Erwinia Carotovora Subsp. Carotovora Include the Hydroxamate Siderophore Aerobactin. J. Bacteriol. 1992, 174, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Cody, Y.S.; Gross, D.C. Outer Membrane Protein Mediating Iron Uptake via Pyoverdin(Pss), the Fluorescent Siderophore Produced by Pseudomonas Syringae Pv. Syringae. J. Bacteriol. 1987, 169, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.A.; Neilands, J.B. Relationship of Siderophore-Mediated Iron Assimilation to Virulence in Crown Gall Disease. J. Bacteriol. 1981, 147, 482–491. [Google Scholar] [CrossRef]
- Nachin, L.; Loiseau, L.; Expert, D.; Barras, F. SufC: An Unorthodox Cytoplasmic ABC/ATPase Required for [Fe-S] Biogenesis under Oxidative Stress. EMBO J. 2003, 22, 427–437. [Google Scholar] [CrossRef]
- Nachin, L.; El Hassouni, M.; Loiseau, L.; Expert, D.; Barras, F. SoxR-Dependent Response to Oxidative Stress and Virulence of Erwinia Chrysanthemi: The Key Role of SufC, an Orphan ABC ATPase. Mol. Microbiol. 2001, 39, 960–972. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.C. Iron Storage in Bacteria. Adv. Microb. Physiol. 1998, 40, 281–351. [Google Scholar]
- Rivera, M. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Acc. Chem. Res. 2017, 50, 331–340. [Google Scholar] [CrossRef]
- Boughammoura, A.; Matzanke, B.F.; Böttger, L.; Reverchon, S.; Lesuisse, E.; Expert, D.; Franza, T. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia Chrysanthemi 3937. J. Bacteriol. 2008, 190, 1518–1530. [Google Scholar] [CrossRef]
- Yang, J.; Pan, X.; Xu, Y.; Li, Y.; Xu, N.; Huang, Z.; Ye, J.; Gao, D.; Guo, M. Agrobacterium Tumefaciens Ferritins Play an Important Role in Full Virulence through Regulating Iron Homeostasis and Oxidative Stress Survival. Mol. Plant Pathol. 2020, 21, 1167–1178. [Google Scholar] [CrossRef]
- Franza, T.; Sauvage, C.; Expert, D. Iron Regulation and Pathogenicity in Erwinia Chrysanthemi 3937: Role of the Fur Repressor Protein. Mol. Plant-Microbe Interact. 1999, 12, 119–128. [Google Scholar] [CrossRef]
- Subramoni, S.; Sonti, R.V. Growth Deficiency of a Xanthomonas Oryzae Pv. Oryzae Fur Mutant in Rice Leaves Is Rescued by Ascorbic Acid Supplementation. Mol. Plant-Microbe Interact. MPMI 2005, 644, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Jittawuttipoka, T.; Sallabhan, R.; Vattanaviboon, P.; Fuangthong, M.; Mongkolsuk, S. Mutations of Ferric Uptake Regulator (Fur) Impair Iron Homeostasis, Growth, Oxidative Stress Survival, and Virulence of Xanthomonas Campestris Pv. Campestris. Arch. Microbiol. 2010, 192, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Lee, J.S.; Oh, J.I.; Choi, J.W.; Baik, H.S. Functional Analysis of the Role of Fur in the Virulence of Pseudomonas Syringae Pv. Tabaci 11528: Fur Controls Expression of Genes Involved in Quorum-Sensing. Biochem. Biophys. Res. Commun. 2008, 366, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, Y.; Yuan, Z.H.; Zhang, H.; Peng, B.Y.; Wang, F.F.; Qian, W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog. 2016, 12, e1006133. [Google Scholar] [CrossRef]
- Massé, E.; Gottesman, S. A Small RNA Regulates the Expression of Genes Involved in Iron Metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 4620–4625. [Google Scholar] [CrossRef] [PubMed]
- Chareyre, S.; Mandin, P. Bacterial Iron Homeostasis Regulation by SRNAs. Microbiol. Spectr. 2018, 6, RWR-0010-2017. [Google Scholar] [CrossRef] [PubMed]
- Filiatrault, M.J.; Stodghill, P.V.; Bronstein, P.A.; Moll, S.; Lindeberg, M.; Grills, G.; Schweitzer, P.; Wang, W.; Schroth, G.P.; Luo, S.; et al. Transcriptome Analysis of Pseudomonas Syringae Identifies New Genes, Noncoding RNAs, and Antisense Activity. J. Bacteriol. 2010, 192, 2359–2372. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, L.; Wang, X.; Sun, F.; Kong, X.; Dong, H.; Xu, H. Two Virulent SRNAs Identified by Genomic Sequencing Target the Type III Secretion System in Rice Bacterial Blight Pathogen. BMC Plant Biol. 2018, 18, 237. [Google Scholar] [CrossRef]
- Wilms, I.; Overlöper, A.; Nowrousian, M.; Sharma, C.M.; Narberhaus, F. Deep Sequencing Uncovers Numerous Small RNAs on All Four Replicons of the Plant Pathogen Agrobacterium Tumefaciens. RNA Biol. 2012, 9, 446–457. [Google Scholar] [CrossRef]
- Jiang, C.-H.; Li, Z.-J.; Zheng, L.-Y.; Yu, Y.-Y.; Niu, D.-D. Small RNAs: Efficient and Miraculous Effectors That Play Key Roles in Plant–Microbe Interactions. Mol. Plant Pathol. 2023, 24, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Kwenda, S.; Gorshkov, V.; Ramesh, A.M.; Naidoo, S.; Rubagotti, E.; Birch, P.R.J.; Moleleki, L.N. Discovery and Profiling of Small RNAs Responsive to Stress Conditions in the Plant Pathogen Pectobacterium Atrosepticum. BMC Genom. 2016, 17, 47. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, Y.-T.; Zhang, J.-Q.; Wang, X.-J.; Fang, R.-X.; Jia, Y.-T. Identification and Functional Characterization of Small Non-Coding RNAs in Xanthomonas Oryzae Pathovar Oryzae. BMC Genom. 2011, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, C.; Findeiss, S.; Sharma, C.M.; Kuhfuss, J.; Hoffmann, S.; Vogel, J.; Stadler, P.F.; Bonas, U. Genome-Wide Transcriptome Analysis of the Plant Pathogen Xanthomonas Identifies SRNAs with Putative Virulence Functions. Nucleic Acids Res. 2012, 40, 2020–2031. [Google Scholar] [CrossRef]
- Schmidtke, C.; Abendroth, U.; Brock, J.; Serrania, J.; Becker, A.; Bonas, U. Small RNA SX13: A Multifaceted Regulator of Virulence in the Plant Pathogen Xanthomonas. PLoS Pathog. 2013, 9, e1003626. [Google Scholar] [CrossRef]
- Connorton, J.M.; Balk, J.; Rodríguez-Celma, J. Iron Homeostasis in Plants-a Brief Overview. Metallomics 2017, 9, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Kroh, G.E.; Pilon, M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int. J. Mol. Sci. 2020, 21, 3395. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Robe, K.; Gaymard, F.; Izquierdo, E.; Dubos, C. The Transcriptional Control of Iron Homeostasis in Plants: A Tale of BHLH Transcription Factors? Front. Plant Sci. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Bermúdez, I.C.; Schmidt, W. How Plants Recalibrate Cellular Iron Homeostasis. Plant Cell Physiol. 2022, 63, 154–162. [Google Scholar] [CrossRef]
- Li, M.; Watanabe, S.; Gao, F.; Dubos, C. Iron Nutrition in Plants: Towards a New Paradigm? Plants 2023, 12, 384. [Google Scholar] [CrossRef]
- Vélez-Bermúdez, I.C.; Schmidt, W. Iron Sensing in Plants. Front. Plant Sci. 2023, 14, 1145510. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, N.; Bhandari, D.D.; Lapin, D.; Sun, X.; Luo, X.; Wang, Y.; Cao, J.; Wang, H.; Coaker, G.; et al. Bacterial Effector Targeting of a Plant Iron Sensor Facilitates Iron Acquisition and Pathogen Colonization. Plant Cell 2021, 33, 2015–2031. [Google Scholar] [CrossRef]
- Long, T.A.; Tsukagoshi, H.; Busch, W.; Lahner, B.; Salt, D.E.; Benfey, P.N. The BHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots. Plant Cell 2010, 22, 2219–2236. [Google Scholar] [CrossRef]
- Selote, D.; Samira, R.; Matthiadis, A.; Gillikin, J.W.; Long, T.A. Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors. Plant Physiol. 2015, 167, 273–286. [Google Scholar] [CrossRef]
- Rampey, R.A.; Woodward, A.W.; Hobbs, B.N.; Tierney, M.P.; Lahner, B.; Salt, D.E.; Bartel, B. An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness. Genetics 2006, 174, 1841–1857. [Google Scholar] [CrossRef] [PubMed]
- Dellagi, A.; Segond, D.; Rigault, M.; Fagard, M.; Simon, C.; Saindrenan, P.; Expert, D. Microbial Siderophores Exert a Subtle Role in Arabidopsis during Infection by Manipulating the Immune Response and the Iron Status. Plant Physiol. 2009, 150, 1687–1696. [Google Scholar] [CrossRef]
- Dellagi, A.; Rigault, M.; Segond, D.; Roux, C.; Kraepiel, Y.; Cellier, F.; Briat, J.F.; Gaymard, F.; Expert, D. Siderophore-Mediated Upregulation of Arabidopsis Ferritin Expression in Response to Erwinia Chrysanthemi Infection. Plant J. 2005, 43, 262–272. [Google Scholar] [CrossRef]
- Aznar, A.; Chen, N.W.G.; Rigault, M.; Riache, N.; Joseph, D.; Desmaële, D.; Mouille, G.; Boutet, S.; Soubigou-Taconnat, L.; Renou, J.P.; et al. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores. Plant Physiol. 2014, 164, 2167–2183. [Google Scholar] [CrossRef] [PubMed]
- Nobori, T.; Velásquez, A.C.; Wu, J.; Kvitko, B.H.; Kremer, J.M.; Wang, Y.; He, S.Y.; Tsuda, K. Transcriptome Landscape of a Bacterial Pathogen under Plant Immunity. Proc. Natl. Acad. Sci. USA 2018, 115, E3055–E3064. [Google Scholar] [CrossRef]
- Nobori, T.; Wang, Y.; Wu, J.; Stolze, S.C.; Tsuda, Y.; Finkemeier, I.; Nakagami, H.; Tsuda, K. Multidimensional Gene Regulatory Landscape of a Bacterial Pathogen in Plants. Nat. Plants 2020, 6, 883–896. [Google Scholar] [CrossRef]
- Labidi, S.; Sandhu, R.K.; Beaulieu, C.; Beaudoin, N. Increased Ferritin and Iron Accumulation in Tubers of Thaxtomin A-Habituated Potato Var. Yukon Gold Somaclones with Enhanced Resistance to Common Scab. J. Plant Pathol. 2022, 105, 107–119. [Google Scholar] [CrossRef]
- Briat, J.F.; Ravet, K.; Arnaud, N.; Duc, C.; Boucherez, J.; Touraine, B.; Cellier, F.; Gaymard, F. New Insights into Ferritin Synthesis and Function Highlight a Link between Iron Homeostasis and Oxidative Stress in Plants. Ann. Bot. 2010, 105, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Huang, Y.T.; Schmidt, W.; Klein, P.; Chan, M.T.; Pan, I.C. Ethylene Response Factor109 Attunes Immunity, Photosynthesis, and Iron Homeostasis in Arabidopsis Leaves. Front. Plant Sci. 2022, 13, 841366. [Google Scholar] [CrossRef] [PubMed]
- Govoni, G.; Gros, P. Macrophage NRAMP1 and Its Role in Resistance to Microbial Infections. Inflamm. Res. 1998, 47, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Segond, D.; Dellagi, A.; Lanquar, V.; Rigault, M.; Patrit, O.; Thomine, S.; Expert, D. NRAMP Genes Function in Arabidopsis Thaliana Resistance to Erwinia Chrysanthemi Infection. Plant J. 2009, 58, 195–207. [Google Scholar] [CrossRef]
- Kieu, N.P.; Aznar, A.; Segond, D.; Rigault, M.; Simond-Côte, E.; Kunz, C.; Soulie, M.C.; Expert, D.; Dellagi, A. Iron Deficiency Affects Plant Defence Responses and Confers Resistance to Dickeya Dadantii and Botrytis Cinerea. Mol. Plant Pathol. 2012, 13, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Trapet, P.L.; Verbon, E.H.; Bosma, R.R.; Voordendag, K.; Van Pelt, J.A.; Pieterse, C.M.J. Mechanisms Underlying Iron Deficiency-Induced Resistance against Pathogens with Different Lifestyles. J. Exp. Bot. 2021, 72, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Deák, M.; Horváth, G.V.; Davletova, S.; Török, K.; Sass, L.; Vass, I.; Barna, B.; Király, Z.; Dudits, D. Plants Ectopically Expressing the Iron-Binding Protein, Ferritin, Are Tolerant to Oxidative Damage and Pathogens. Nat. Biotechnol. 1999, 17, 192–196. [Google Scholar] [CrossRef]
- Pandey, S.S.; Patnana, P.K.; Padhi, Y.; Chatterjee, S. Low-Iron Conditions Induces the Hypersensitive Reaction and Pathogenicity Hrp Genes Expression in Xanthomonas and Is Involved in Modulation of Hypersensitive Response and Virulence. Environ. Microbiol. Rep. 2018, 10, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Noman, M.; Jiang, H.; Shahid, M.; Ma, C.; Wu, Z.; Nazir, M.M.; Ali, M.A.; White, J.C.; Chen, J.; et al. Bioengineered Chitosan-Iron Nanocomposite Controls Bacterial Leaf Blight Disease by Modulating Plant Defense Response and Nutritional Status of Rice (Oryza sativa L.). Nano Today 2022, 45, 101547. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Dangol, S.; Chen, Y.; Hwang, B.K.; Jwa, N.S. Iron- and Reactive Oxygen Species-Dependent Ferroptotic Cell Death in Rice-Magnaporthe Oryzae Interactions. Plant Cell 2019, 31, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Distéfano, A.M.; Martin, M.V.; Córdoba, J.P.; Bellido, A.M.; D’Ippólito, S.; Colman, S.L.; Soto, D.; Roldán, J.A.; Bartoli, C.G.; Zabaleta, E.J.; et al. Heat Stress Induces Ferroptosis-like Cell Death in Plants. J. Cell Biol. 2017, 216, 463–476. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Wang, J.; Liu, D.; Hwang, B.K.; Jwa, N.S. Rice Iron Storage Protein Ferritin 2 (OsFER2) Positively Regulates Ferroptotic Cell Death and Defense Responses against Magnaporthe Oryzae. Front. Plant Sci. 2022, 13, 1019669. [Google Scholar] [CrossRef] [PubMed]
- Macharia, M.; Das, P.P.; Naqvi, N.I.; Wong, S.-M. ITRAQ-Based Quantitative Proteomics Reveals a Ferroptosis-like Programmed Cell Death in Plants Infected by a Highly Virulent Tobacco Mosaic Virus Mutant 24A+UPD. Phytopathol. Res. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Romera, F.J.; García, M.J.; Lucena, C.; Martínez-Medina, A.; Aparicio, M.A.; Ramos, J.; Alcántara, E.; Angulo, M.; Pérez-Vicente, R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. Front. Plant Sci. 2019, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Verbon, E.H.; Trapet, P.L.; Kruijs, S.; Temple-Boyer-Dury, C.; Rouwenhorst, T.G.; Pieterse, C.M.J. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Front. Plant Sci. 2019, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Pierson, E.A.; Setubal, J.C.; Xu, J.; Levy, J.G.; Zhang, Y.; Li, J.; Rangel, L.T.; Martins, J. The Candidatus Liberibacter–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. Annu. Rev. Phytopathol. 2017, 55, 451–482. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.S.; Hendrich, C.; Andrade, M.O.; Wang, N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus HLB. Phytopathology 2022, 112, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing Is a Pathogen-Triggered Immune Disease That Can Be Mitigated with Antioxidants and Gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.S.; Xu, J.; Achor, D.; Li, J.; Wang, N. Microscopic and Transcriptomic Analyses of Early Events Triggered by Candidatus Liberibacter Asiaticus in Young Flushes of HLB-Positive Citrus Trees. Phytopathology 2022, 133, 985–997. [Google Scholar] [CrossRef]
S. No. | Phytopathogenic Bacteria | Iron Chelator | Role in Virulence | Reference |
---|---|---|---|---|
01. | Dickeya dadantii (syn. Erwinia chrysanthemi) | Chrysobactin, achromobactin | Required for optimum virulence | [51,52] |
02. | Dickeya dadantii | IbpS | Required for optimum virulence | [53] |
03. | Erwinia amylovora | Desferrioxamine (DFO) | Required for optimum virulence | [54] |
04. | Erwinia carotovora subsp. carotovora | Aerobactin, Chrysobactin | Not required for virulence | [56,57,70] |
05. | Pseudomonas syringae pv. tabaci 6605 | Pyoverdine | Required for optimum virulence | [58] |
06. | Pseudomonas syringae pv. phaseolicola 1448a | Pyoverdine, achromobactin | Not required for virulence | [59] |
07. | Pseudomonas syringae pv. syringae B301D | Pyoverdine | Not required for virulence | [71] |
08. | Pseudomonas syringae pv. tomato DC3000 | Pyoverdine, yersiniabactin | Not required for virulence | [67] |
09. | Xanthomonas campestris pv. campestris 8004 | Xanthoferrin | Required for optimum virulence | [61] |
10. | Xanthomonas oryzae pv. oryzae BXO1 | Xanthoferrin | Not required for virulence | [60,64] |
11. | Xanthomonas oryzae pv. oryzicola BXOR1 | Xanthoferrin | Required for optimum virulence | [64,65] |
12. | Xanthomonas campestris pv. campestris 8004 | Cyclic β-(1,2)-glucans | Required for optimum virulence | [33] |
13. | Agrobacterium tumefaciens C58 | Unknown iron chelator | Not required for virulence | [66] |
14. | Agrobacterium tumefaciens strain B6 | Agrobactin | Not required for virulence | [72] |
15. | Ralstonia solanacearum AW1 | Staphyloferrin B | Not required for virulence | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, S.S. The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response. Plants 2023, 12, 3173. https://doi.org/10.3390/plants12173173
Pandey SS. The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response. Plants. 2023; 12(17):3173. https://doi.org/10.3390/plants12173173
Chicago/Turabian StylePandey, Sheo Shankar. 2023. "The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response" Plants 12, no. 17: 3173. https://doi.org/10.3390/plants12173173
APA StylePandey, S. S. (2023). The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response. Plants, 12(17), 3173. https://doi.org/10.3390/plants12173173