The Use of PGPB to Promote Plant Hydroponic Growth
<p>The original hydroponic system built by Gericke in 1929. A roll of bituminous roofing paper (36 ft × 3 ft) was folded up on every edge 6 inches to form a trough (<b>A</b>). On top of the trough a layer of wire netting was attached (<b>B</b>), and a layer of burlap (<b>C</b>) was added on top of the wire. A one-inch layer of sand (<b>D</b>) was added on top as a substrate for the plants to grow in. The trough was filled with nutrient solution (<b>E</b>), and a variety of crops were planted in the system.</p> "> Figure 2
<p>A wicking hydroponic system in which plants are grown in an absorbent soilless grow media (<b>A</b>). Nutrient solution is transferred from the reservoir (<b>B</b>) to the plant roots via an absorbent wicking material (<b>C</b>).</p> "> Figure 3
<p>An ebb and flow or flood and drain hydroponic system in which nutrient solution is pumped from an external reservoir (<b>A</b>) over the plants at set intervals during the day. (<b>I</b>) During the fill stage a timer turns on the pump (<b>B</b>), which pumps the nutrient solution up through a pipe or tube (<b>C</b>), through the fill inlet/drain (<b>D</b>), and into the flood tray (<b>E</b>). An overflow drainpipe (<b>F</b>) sits several inches above the fill inlet/drain, and prevents the system from overflowing. (<b>II</b>) If the tray starts to overflow nutrient solution will return to the reservoir (<b>A</b>) through the tube connected to the overflow drainpipe (<b>G</b>). Once the pump turns off, the nutrient solution drains back down the fill tube (<b>C</b>), through the pump (<b>B</b>), and into the reservoir (<b>G</b>). (<b>III</b>) After the pump turns off the flood table (<b>E</b>) drains completely back into the reservoir (<b>A</b>) and sits empty until the next pump cycle.</p> "> Figure 4
<p>(<b>I</b>) A drip irrigation system comprised of water pumps (<b>A</b>,<b>B</b>), two reservoirs (<b>C</b>,<b>D</b>), a watering line/pipe (<b>E</b>), a drain trough (<b>F</b>), drip lines (<b>G</b>), drip stakes (<b>H</b>), a smaller grow media cube than the transplanted plant was propagated in (<b>I</b>), a large grow media slab (<b>J</b>), a platform (<b>K</b>), a drainpipe (<b>L</b>), and a water purification system (<b>M</b>). (<b>II</b>) Several times a day water is pumped from the storage reservoir, through the drip lines and over the roots of the plants. The nutrient solution that runs off the roots of the plant is usually filtered and sterilized to eliminate any pathogens prior to recirculation. The nutrients content of the collected nutrient solution is then adjusted back to desired levels before it is recirculated back onto the plants. In non-recirculated systems water is collected in a drainage trough and fed back to a central reservoir. The nutrient solution is then filtered and sterilized to remove particulates and pathogens.</p> "> Figure 5
<p>(<b>I</b>) A nutrient film hydroponic system comprised of two water pumps (<b>A</b>,<b>B</b>), two reservoirs (<b>C</b>,<b>D</b>), a watering line (<b>E</b>), a grow trough (<b>F</b>), a drainpipe (<b>G</b>), and a sterilization system (<b>H</b>). (<b>II</b>) Water is pumped from the storage reservoir, through the watering line, and down the grow trough where it runs around the roots of the plant. The nutrient solution then drains out of the grow trough, and is fed back to a central reservoir through the drainpipe. The nutrient solution is then filtered and sterilized to remove particulates and pathogens.</p> "> Figure 6
<p>Examples of commercial or research hydroponic systems. (<b>A</b>) A small NFT system growing lettuce. (<b>B</b>) An indoor deep water culture system growing lettuce. (<b>C</b>) A tomato greenhouse using drip irrigation. (<b>D</b>) A close up of the drip irrigation system used in the tomato greenhouse. The tomato plants in this system are growing in rockwool cubes placed upon rockwool slabs.</p> "> Figure 7
<p>A deep-water culture hydroponic system comprised of a reservoir (<b>A</b>), a floating raft (<b>B</b>), an air pump (<b>C</b>), an airline (<b>D</b>), and a bubbler (<b>E</b>). Plants are placed in the grow raft and suspended in the nutrient solution. Proper oxygenation of the root zone is ensured by bubbling air through the nutrient solution.</p> "> Figure 8
<p>An aeroponic system consisting of a water pump (<b>A</b>), nutrient reservoir (<b>B</b>), watering line (<b>C</b>), a plant support plate (<b>D</b>), spray heads/nebulizers (<b>E</b>), a collection tray (<b>F</b>), and a return pipe (<b>G</b>). Plants are supported above the spray heads such that the roots of the plant are exposed to the air. Nutrient solution is misted onto the roots of the plants via the spray heads and runoff is collected and returned to the nutrient solution reservoir.</p> "> Figure 9
<p>An Aquaponics system composed of a pump (<b>A</b>), fish tank (<b>B</b>), watering line (<b>C</b>), NFT troughs (<b>D</b>), water collection pipe (<b>E</b>), and fish (<b>F</b>). Fish and microbes in the fish tank generate effluent which is used as a nutrient source for the plants. The effluent water is pumped over the roots of the plants, which clean the water by removing metabolic byproducts that are toxic to the fish. The cleaned water is then returned to the fish tank.</p> "> Figure 10
<p>(<b>A</b>) Overview of some of the components of soil bacteria and their localization. (<b>B</b>) Overview of the major mechanisms used by PGPB. VOC refers to volatile organic compounds.</p> ">
Abstract
:1. Introduction
2. Hydroponic Systems
2.1. Wicking Systems
2.2. Ebb and Flow (Flood and Drain)
2.3. Drip Irrigation
2.4. Nutrient Film Technique (NFT)
2.5. Deep Water Culture
2.6. Aeroponics
2.7. Aquaponics
2.8. Substrates
2.9. Nutrient Solution
2.10. Lighting
3. Plant Growth-Promoting Bacteria
3.1. Mechanisms Used by PGPB
3.2. Bacterial Consortia
4. Plant Growth Promoting Bacteria Research in Hydroponics
4.1. The Hydroponic Microbiome
4.2. PGPB That Increase Nutrient Uptake
4.3. PGPB That Regulate Hormones
4.4. Biocontrol Agents
4.5. Bioremediation and Osmotic Stress
5. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Rodríguez, A.M.; Salcedo Gastelum, L.A.; Félix Pablos, C.M.; Parra-Cota, F.I.; Santoyo, G.; Puente, M.L.; Bhattacharya, D.; Mukherjee, J.; de los Santos-Villalobos, S. The current and future role of microbial culture collections in food security worldwide. Front. Sustain. Food Syst. 2021, 4, 614739. [Google Scholar] [CrossRef]
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Amer. J. Agr. Econ. 2021, 103, 422–447. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Jiang, Q. Food and water gaps to 2050: Preliminary results from the global food and water system (GFWS) platform. Food Secur. 2015, 7, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Land Use. Published Online at OurWorldInData. Available online: https://ourworldindata.org/land-use (accessed on 25 August 2022).
- Pathania, P.; Rajta, A.; Singh, P.C.; Bhatia, R. Role of plant growth-promoting bacteria in sustainable agriculture. Biocatal. Agric. Biotechnol. 2020, 30, 101842. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Haider, J.; Rai, A.B. Emergence of new insect pests on vegetables during the last decade: A case study. Curr. Hortic. 2021, 9, 20–26. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Nemali, K. History of controlled environment horticulture: Greenhouses. HortScience 2022, 57, 239–246. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Berkers, E.; Geels, F.W. System innovation through stepwise reconfiguration: The case of technological transitions in Dutch greenhouse horticulture (1930–1980). Technol. Anal. Strateg. Manag. 2011, 23, 227–247. [Google Scholar] [CrossRef]
- Muñoz-Liesa, J.; Toboso-Chavero, S.; Mendoza Beltran, A.; Cuerva, E.; Gallo, E.; Gassó-Domingo, S.; Josa, A. Building-integrated agriculture: Are we shifting environmental impacts? An environmental assessment and structural improvement of urban greenhouses. Res. Conserv. Recycl. 2021, 169, 105526. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J. Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Sci. Hortic. 2015, 195, 206–215. [Google Scholar] [CrossRef]
- Vasdravanidis, C.; Alvanou, M.V.; Lattos, A.; Papadopoulos, D.K.; Chatzigeorgiou, J.; Ravani, M.; Liantas, G.; Georgoulis, I.; Feidantsis, K.; Ntinas, G.K.; et al. Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals 2022, 12, 2523. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, M.; Razzaghi Asl, S.; Ghamari, H. Thermal performance simulation of hydroponic green wall in a cold climate. Int. J. Srchitect. Eng. Urban Plan 2019, 29, 233–246. [Google Scholar]
- Rodríguez-Delfína, A. Advances of hydroponics in Latin America. Acta Hortic. 2012, 947, 23–32. [Google Scholar] [CrossRef]
- Peterson, A.K.; Solberg, B. Greenhouse gas emissions, life-cycle inventory and cost-efficiency of using laminated wood instead of steel construction.: Case: Beams at Gardermoen airport. Environ. Sci. Pol. 2002, 5, 169–182. [Google Scholar] [CrossRef]
- Sumalan, R.L.; Stroia, N.; Moga, D.; Muresan, V.; Lodin, A.; Vintila, T.; Popescu, C.A. A Cost-effective embedded platform for greenhouse environment control and remote monitoring. Agronomy 2020, 10, 936. [Google Scholar] [CrossRef]
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Cientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzalone, A.; Mosca, A.; Dimaria, G.; Nicotra, D.; Tessitori, M.; Privitera, G.F.; Pulvirenti, A.; Leonardi, C.; Catara, V. Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. Int. J. Mol. Sci. 2022, 23, 8820. [Google Scholar] [CrossRef] [PubMed]
- Gericke, W.F. Crop production without soil. Nature 1938, 141, 536–540. [Google Scholar] [CrossRef]
- Gericke, W.F. Aquaculture: A means of crop-production. Am. J. Bot. 1929, 16, 862. [Google Scholar]
- Gericke, W.F. Hydroponics—Crop production in liquid culture media. Science 1937, 85, 177–178. [Google Scholar] [CrossRef]
- Felipe, A.J.B.; Bareng, J.L.R. Growth and yield assessment of lettuce (Lactuca sativa L.): An economic feasibility and performance evaluation of capillary wick irrigation system. Plant Sci. Today 2021, 9, 62–69. [Google Scholar] [CrossRef]
- Semananda, N.P.K.; Ward, J.D.; Myers, B.R. Assessing reliability of recycled water in wicking beds for sustainable urban agriculture. Earth 2021, 2, 468–484. [Google Scholar] [CrossRef]
- Daud, M.; Handika, V.; Bintoro, A. Design and realization of fuzzy logic control for ebb and flow hydroponic system. Int. J. Sci. Tech. Res. 2018, 7, 138–144. [Google Scholar]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Wang, K.; Ali, M.M.; Pan, K.; Su, S.; Xu, J.; Chen, F. Ebb-and-flow subirrigation improves seedling growth and root morphology of tomato by influencing root-softening enzymes and transcript profiling of related genes. Agronomy 2022, 12, 494. [Google Scholar] [CrossRef]
- Li, B.; Shukla, M.K.; Du, T. Combined environmental stresses induced by drip irrigation positively affect most solar greenhouse grown tomato fruit quality. Sci. Hortic. 2021, 288, 110334. [Google Scholar] [CrossRef]
- Wheatley, M.D.; Tattersall, E.A.R.; Tillett, R.L.; Cramer, G.R. An expanded clay pebble, continuous recirculating drip system for viable long-term hydroponic grapevine culture. Am. J. Enol. Vitic. 2009, 60, 542–549. [Google Scholar]
- Dartey, Y.O.O.; Antwi, E.B.O.; Bassit, M.M.; Oduro-Koranteng, E.A. Small scale automated drip circulation system. J. Elec. Engin. U. 2021, 5, 186–196. [Google Scholar]
- Goswami, B.; Yadav, V. Soil-less culture (hydroponics)—A review. Just Agric. 2022, 2, 1–12. [Google Scholar]
- Cooper, A. Commercial Applications of NFT; Grower Books: London, UK, 1978; p. 93. [Google Scholar]
- Frasetyal, B.; Harisman, K.; Ramdaniah, N.A.H. The effect of hydroponics systems on the growth of lettuce. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098, 042115. [Google Scholar] [CrossRef]
- Hamza, A.; Abdelraouf, R.E.; Helmy, Y.I.; El-Sawy, S.M.M. Using deep water culture as one of the important hydroponic systems for saving water, mineral fertilizers and improving the productivity of lettuce crop. Int. J. Health Sci. 2022, 6, 2311–2331. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interac. 2018, 13, 338–352. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019; pp. 1–193. [Google Scholar]
- Espinal, C.A.; Matulić, D. Aquaponics Food Production Systems, Chapter 3: Recirculating Aquaculture Techniques, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 35–75. [Google Scholar]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mattson, N.S.; Peters, C. A recipe for hydroponic success. Inside Grower 2014, 16–19. [Google Scholar]
- Jin, D.; Jin, S.; Chen, J. Cannabis indoor growing conditions, management practices, and post-harvest treatment: A review. Am. J. Plnt. Sci. 2019, 10, 925–946. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Quagrainie, K.K.; Flores, R.M.V.; Kim, H.J.; McClain, V. Economic analysis of aquaponics and hydroponics production in the U.S. midwest. J. Appl. Aquac. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Oxford Analytica. Fertiliser and Food Prices Could Be High for Years. Published Online at Oxford Analytica Expert Briefings. Available online: https://dailybrief.oxan.com/Analysis/DB268415/Fertiliser-and-food-prices-could-be-high-for-years (accessed on 1 September 2022).
- Glick, B.R. Beneficial Plant-Bacterial Interactions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; p. 383. [Google Scholar]
- Lynch, J.M. The Rhizosphere; Wiley-Interscience: Chichester, UK, 1990; p. 458. [Google Scholar]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in the rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root exudation and rhizosphere biology. Plant Physiol. 2003, 32, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Glick, B.R.; Gamalero, E. Recent developments in the study of plant microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O.; Glick, B.R. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere 2021, 20, 100433. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiolog. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Glick, B.R. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 1995, 41, 109–117. [Google Scholar] [CrossRef]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant-microbe interactions. Anton. Van. Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Rodriguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Zhao, F.; Sheng, X.; Huang, Z.; He, L. Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers. Sci. 2008, 16, 593–600. [Google Scholar]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.M.; Awad, M.Y.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Neilands, J.B. Iron absorption and transport in microorganisms. Annu. Rev. Nutrit. 1981, 1, 27–46. [Google Scholar] [CrossRef]
- Crowley, D.E.; Reid, C.P.P.; Szaniszlo, P.J. Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol. 1988, 87, 685–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Q. Perspectives in biological nitrogen fixation research. J. Inegr. Plant Biol. 2008, 50, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Mylona, P.; Pawlowski, K.; Bisseling, T. Symbiotic nitrogen fixation. Plant Cell 1995, 7, 869–885. [Google Scholar] [CrossRef]
- Taller, B.J.; Wong, T.Y. Cytokinins in Azotobacter vinelandii culture medium. Appl. Environ. Microbiol. 1989, 55, 266–267. [Google Scholar] [CrossRef] [Green Version]
- Timmusk, S.; Nicander, B.; Granhall, U.; Tillberg, A. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 1999, 31, 1847–1852. [Google Scholar] [CrossRef]
- Mens, C.; Li, D.; Haaima, L.E.; Gresshoff, P.M.; Ferguson, B.J. Local and systemic effect of cytokinins on soybean nodulation and regulation of their isopentenyl transferase (IPT) biosynthesis genes following rhizobia inoculation. Front. Plant Sci. 2018, 9, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, A.H.; Raghuram, B.; Eschen-Lippold, L.; Scheel, D.; Lee, J.; Sinha, A.K. Agroinfiltration by cytokinin-producing Agrobacterium sp. Strain GV3101 primes defence responses in Nicotiana tabacum. Int. Soc. Mol. Plant-Micro. Interac. 2014, 27, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Großkinsky, D.K.; Tafner, R.; Moreno, M.V.; Stenglein, S.A.; García de Salamone, I.E.; Nelson, L.M.; Novák, O.; Strnad, M.; van der Graff, E.; Roitsch, T. Cytokinin production by Pseudomonas fluorescens G-20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016, 6, 23310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, K.M.; Kisiala, A.B.; Morrison, E.N.; Emery, R.J.N. Trichoderma synthesizes cytokinins and alters cytokinin dynamics of inoculated Arabidopsis seedlings. J. Plant Growth Reg. 2022, 41, 2678–2694. [Google Scholar] [CrossRef]
- Liu, F.; Xing, S.; Ma, H.; Du, Z.; Ma, B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Micro. Biotech. 2013, 97, 9155–9164. [Google Scholar] [CrossRef]
- Mekureyaw, M.F.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorscens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef]
- Joo, G.J.; Kim, Y.M.; Kim, J.T.; Rhee, I.K.; Kim, J.H.; Lee, I.J. Gibberellins-producing Rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 2005, 43, 510–515. [Google Scholar]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Tanimoto, E. Tall or short? Slender or thick? A plant strategy for regulating elongationgrowth of roots by low concentrations of gibberellin. Ann. Bot. 2012, 110, 373–381. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemlyanskaya, E.V.; Omelyanchuk, N.S.; Ubogoeva, E.V.; Mironova, V.V. Deciphering auxin-ethylene crosstalk at a systems level. Int. J. Molec. Sci. 2018, 19, 4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest. Manag. Sci. 2010, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K.; Manners, J.M. Linking development to defense: Auxin in plant-pathogen interactions. Trends Plant Sci. 2009, 14, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E., Jr. Ethylene in Plant Biology, 2nd ed.; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Hyodo, H. Stress/wound ethylene. In The Plant Hormone Ethylene; Mattoo, A.K., Suttle, J.C., Eds.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Glick, B.R. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 2004, 56, 291–312. [Google Scholar] [PubMed]
- Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur. J. Plant Pathol. 2007, 119, 329–339. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Gamalero, E.; Glick, B.R. The use of plant growth-promoting bacteria to prevent nematode damage to plants. Biology 2020, 9, 381. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.C.; Rocha-Granados, M.C.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzman-Guzman, P.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; Orozco-Mosqueda, M.C.; Glick, B.R. Plant growth stimulation by microbial consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Salvaudon, C.; Midmore, D.J. Oxygenation of the rookwool substrate for hydroponics. Aquaponics J. 2008, 49, 29–33. [Google Scholar]
- Meselmani, M.A. Nutrient solution for hydroponics. In Soiless Culture; IntechOpen: London, UK, 2022; p. 101604. [Google Scholar]
- Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. Modeling soil moisture and oxygen effexts on soil biogeochemical cycles including dissimilatory nitrate reduction to ammononium (DNRA). Adv. Water Res. 2013, 62, 106–124. [Google Scholar] [CrossRef]
- Lei, C.; Engeseth, N.J. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT 2021, 150, 111931. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. The response of barley to salinity stress differs between hydroponic and soil systems. Funct. Plant Biol. 2010, 37, 621–633. [Google Scholar] [CrossRef]
- Riser, E.C.; Grabowski, J.; Glenn, E.P. Microbiology of hydroponically grown lettuce. J. Food Prot. 1984, 47, 765–769. [Google Scholar] [CrossRef]
- Rivera, M.E.D.; Vélez, C.; Zayas, B.; Llamas, K.M. Bacterial assessment on leaves of green vegetable grown on hydroponics and its possible health risks. J. Agric. Environ. Sci. 2015, 4, 1–4. [Google Scholar]
- Van Gerrewey, T.; El-Nakhel, C.; De Pascale, S.; De Paepe, J.; Clauwaert, P.; Kerckhof, F.M.; Boon, N.; Geelen, D. Root-associated bacterial community shifts in hydroponic lettuce cultured with urine-derived fertilizer. Microorganisms 2021, 9, 1326. [Google Scholar] [CrossRef]
- Lobanov, V.; Keesman, K.J.; Joyce, A. Plants dictate root microbial composition in hydroponics and aquaponics. Front. Microbiol. 2022, 13, 848057. [Google Scholar] [CrossRef]
- Sheridan, C.; Depuydt, P.; De Ro, M.; Petit, C.; Van Gysegem, E.; Delaere, P.; Dixon, M.; Stasiak, M.; Aciksöz, S.B.; Frossard, E.; et al. Microbial community dynamics and response to plant growth-promoting microorganisms in the rhizosphere of four common food crops cultivated in hydroponics. Microb. Ecol. 2017, 73, 378–393. [Google Scholar] [CrossRef]
- Ishizawa, H.; Kuroda, M.; Inoue, D.; Morikawa, M.; Ike, M. Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiol. Ecol. 2020, 96, fiaa101. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Fertilizers. Published Online at OurWorldInData. Available online: https://ourworldindata.org/fertilizers (accessed on 30 August 2022).
- Mia, M.A.B.; Shamsuddin, Z.H.; Wahab, Z.; Marziah, M. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Aus. J. Crop Sci. 2010, 4, 85–90. [Google Scholar]
- Ma-on, N. Immobilization of PGPR to Increase Efficiency of Plant Growth Promotion in Hydroponic System. Master’s Thesis, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2009; pp. 3–53. [Google Scholar]
- Ishizawa, H.; Ogata, Y.; Hachiya, Y.; Tokura, K.; Kuroda, M.; Inoue, D.; Toyama, T.; Tanaka, Y.; Mori, K.; Morikawa, M.; et al. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth promoting bacterium, Acinetobacter calcoaceticus P23. Chemosphere 2020, 238, 124682. [Google Scholar] [CrossRef] [PubMed]
- da Silva Cerozi, B.; Fitzsimmons, K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Aini, N.; Yamika, W.S.D.; Ulum, B. Effect of nutrient concentration, PGPR and AMF on plant growth, yield, and nutrient uptake of hydroponic lettuce. Int. J. Agric. Biol. 2019, 21, 175–183. [Google Scholar]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watabame, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Scin. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
- Amora-Lazcano, E.; Quiroz-González, H.; Osornio-Ortega, C.; Cruz-Maya, J.A.; Jan-Roblero, J. Plant growth-promoting bacteria belonging to the genera Pseudomonas and Bacillus improve the growth of sorghum seedlings in a low-nutrient soil. Bot. Sci. 2022, 100, 56–66. [Google Scholar] [CrossRef]
- Begum, N.; Afzal, S.; Zhao, H.; Lou, L.; Cai, Q. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum virgatum L.) biomass. Acta Physiol. Plant 2018, 40, 170. [Google Scholar] [CrossRef]
- Begum, N.; Hu, Z.; Cai, Q.; Lou, L. Influence of PGPB inoculation on HSP70 and HMA3 gene expression in switchgrass under cadmium stress. Plants 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Gül, A.; Özaktan, L.; Yolageldi, L.; Cakir, B.; Sahin, M.; Akat, S. Effect of rhizobacteria on yield of hydroponically grown tomato plants. Acta Hort. 2012, 952, 777–784. [Google Scholar] [CrossRef]
- Aini, N.; Yamika, W.S.D.; Pahlevi, P.W. The effect of nutrient concentration and inoculation of PGPR and AMF on the yield and fruit quality of hydroponic cherry tomatoes (Lycopersicon esculentum Mill. var. cerasiforme). J. Appl. Hortic. 2019, 21, 116–122. [Google Scholar] [CrossRef]
- Tian, W.; Li, L.; Xiao, X.; Wu, H.; Wang, Y.; Hu, Z.; Begum, N.; Zou, Y.; Lou, L.; Chang, M.; et al. Identification of a plant endophytic growth-promoting bacteria capable of inhibiting cadmium uptake in rice. J. Appl. Microbiol. 2022, 132, 520–531. [Google Scholar] [CrossRef]
- Paradiso, R.; Arena, C.; De Micco, V.; Giordano, M.; Aronne, G.; De Pascale, S. Changes in leaf anatomical traits enhanced photosynthetic activity of soybean grown in hydroponics with plant growth-promoting microorganisms. Front. Plant Sci. 2017, 8, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, F.; Meng, Q.; Luo, S.; Shen, J.; Chen, B.; Khan, K.Y.; Japenga, J.; Ma, X.; Yang, X.; Feng, Y. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytoremed 2017, 19, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Varlese, R.; Maraa, R.; Lanzuise, S.; Eid, A.; et al. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013, 347, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Delaporte-Quintana, P.; Lovaisa, N.C.; Rapisarda, V.A.; Pedraza, R.O. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. J. Plant Growth Regul. 2020, 91, 185–199. [Google Scholar] [CrossRef]
- Handy, D.; Hummerick, M.E.; Dixit, A.R.; Ruby, A.M.; Massa, G.; Palmer, A. Identification of plant growth promoting bacteria within space crop production systems. Front. Astron. Space Sci. 2021, 8, 735834. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, C.; Wang, Y.; Xia, Y.; Xiao, W.; Cui, X. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Can. J. Microbiol. 2018, 64, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Orhan, F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz. J. Microbiol. 2016, 47, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Gül, A.; Özaktan, L.; Kidoglu, F.; Tüzel, Y. Rhizobacteria promoted yield of cucumber plants grown in perlite under Fusarium wilt stress. Sci. Hortic. 2013, 153, 22–25. [Google Scholar] [CrossRef]
- Kholssi, R.; Marks, E.A.N.; Miñón, J.; Maté, A.P.; Sacristán, G.; Montero, O.; Debdoubi, A.; Rad, C. A consortium of cyanobacteria and plant growth promoting rhizobacteria for wheat growth improvement in a hydroponic system. S. Afr. J. Bot. 2021, 142, 247–258. [Google Scholar] [CrossRef]
- Araújo, R.C.; Ribeiro, M.S.; Rodrigues, F.A.; Silva, B.S.; Dória, J.; Pasqual, M. Association of growth-promoting bacteria and hydroponic system aiming at reducing the time of production of banana seedlings. Arch. Agron. Soil Sci. 2022. [Google Scholar] [CrossRef]
- Sebring, R.L.; Duiker, S.W.; Berghage, R.D.; Regan, J.M.; Lambert, J.D.; Bryant, R.B. Gluconacetobacter diazotrophicus Inoculation of Two Lettuce Cultivars Affects Leaf and Root Growth under Hydroponic Conditions. Appl. Sci. 2022, 12, 1585. [Google Scholar] [CrossRef]
- Thongnok, S.; Siripornadulsil, W.; Siripornadulsil, S. AsIII-oxidizing and Cd-tolerant plant growth-promoting bacteria synergistically reduce arsenic translocation, toxicity and accumulation in KDML105 rice. Environ. Exp. Bot. 2021, 192, 104660. [Google Scholar] [CrossRef]
- Gagné, S.; Dehbi, L.; Le Quéré, D.; Cayer, F.; Morin, J.L.; Lemay, R.; Fournier, N. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biol. Biochem. 1993, 25, 269–272. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Liu, Q.; Vestergård, M.; Topalovic, O.; Wang, Q.; Zhou, Q.; Huang, L.; Yang, X.; Feng, Y. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. J. Hazard Matr. 2020, 395, 122661. [Google Scholar] [CrossRef]
- Sutton, J.C.; Sopher, C.R.; Owen-Going, T.N.; Liu, W.; Grodzinski, B.; Hall, J.C.; Benchimol, R.L. Etiology and epidemiology of Pythium root rot in hydroponic crops: Current knowledge and perspectives. Summa Phytopathol. 2006, 32, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Sutton, J.C.; Grodzinski, B.; Kloepper, J.W.; Reddy, M.S. Biological control of Pythium root rot of chrysanthemum in small-scale hydroponic units. Phytoparasitica 2007, 35, 159–178. [Google Scholar] [CrossRef]
- Sopher, C.R.; Sutton, J.C. Quantitative relationships of Pseudomonas chlororaphis 63-28 to Pythium root rot and growth in hydroponic peppers. Trop. Plant Pathol. 2011, 36, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Utkhede, R.S.; Lévesque, C.A.; Dinh, D. Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Can. J. Plant Pathol. 2000, 22, 138–144. [Google Scholar] [CrossRef]
- Kanjanamaneesathian, M.; Wiwattanapatapee, R.; Rotniam, W.; Wongpetkhiew, W. Spraying hydroponic lettuce roots with a suspension concentrate formulation of Bacillus velezensis to suppress root rot disease and promote plant growth. Biol. Control 2014, 67, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.; Alsanius, B.W. Evaluation of biocontrol agents for managing root diseases on hydroponically grown tomato. J. Plant Dis. Protect 2010, 117, 214–219. [Google Scholar] [CrossRef]
- Postma, J.; Stevens, L.H.; Wiegers, G.L.; Davelaar, E.; Nijhuis, E.H. Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biol. Control 2008, 48, 301–309. [Google Scholar] [CrossRef]
- Punja, Z.K.; Yip, R. Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can. J. Plant Pathol. 2003, 25, 411–417. [Google Scholar] [CrossRef]
- Rose, S.; Parker, M.; Punja, Z.K. Efficacy of biological and chemical treatments for control of Fusarium root and stem rot on greenhouse cucumber. Plant Dis. 2003, 87, 1462–1470. [Google Scholar] [CrossRef] [Green Version]
- Khan, P.; Bora, L.C.; Borah, P.K.; Bora, P.; Talukdar, K. Efficacy of microbial consortia against bacterial wilt caused by Ralstonia solanacearum in hydroponically grown lettuce plant. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3046–3055. [Google Scholar] [CrossRef]
- Cirou, A.; Raffouz, A.; Diallo, S.; Latour, X.; Dessaux, Y.; Faure, D. Gamma-caprolactone stimulates growth of quorum-quenching Rhodococcus populations in a large-scale hydroponic system for culturing Solanum tuberosum. Res. Microbiol. 2011, 162, 945–950. [Google Scholar] [CrossRef]
- Djonović, S.; Vargas, W.A.; Kolomiets, M.V.; Horndeski, M.; Wiest, A.; Kenerley, C.M. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 2007, 145, 875–889. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Gutiérrez, M.L.; Ruiz-Ordaz, N.; Galíndez-Mayer, J.; Santoyo-Tepole, F.; Curiel-Quesada, E.; García-Mena, J.; Ahuatzi-Chacón, D. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor. Bioprocess Biosyst. Eng. 2017, 40, 519–528. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef]
- Zhang, P.; Senge, M.; Day, Y. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev. Agric. Sci. 2016, 4, 46–55. [Google Scholar] [CrossRef]
- Qaryouti, M.M.; Qawasmi, W.; Hamdan, H.; Edwan, M. Influence of NaCl salinity stress on yield, plant water uptake, and drainage water of tomato grown in soilless culture. Acta Hortic. 2007, 747, 70. [Google Scholar] [CrossRef]
- Gharelo, R.S.; Bandehag, A.; Toorchi, M.; Farajzadeh, D. Canola 2-dimensional proteome profiles under osmotic stress and inoculation with Pseudomonas fluorescens FY32. Plant Cell Biotech. Mol. Biol. 2016, 17, 257–266. [Google Scholar]
- Moncada, A.; Vetrano, F.; Miceli, A. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 2020, 10, 1523. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Srivastava, S.; Chauhan, P.S.; Seem, K.; Mishra, A.; Sopory, S.K. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 2013, 66, 1–9. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Savvas, D.; Aliferis, K.; Ntatsi, G.; Marakis, G.; Simou, E.; Tampakaki, A.; Karapanos, I. Impact of plant growth-promoting rhizobacteria inoculation and grafting on tolerance of tomato to combined water and nutrient stress. Front. Plant Sci. 2021, 12, 670236. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.; Kislinger, T.; Emili, A. Integrating gene and protein expression data: Pattern analysis and profile mining. Methods 2005, 35, 303–314. [Google Scholar] [CrossRef]
- Monje, O.; Hummerick, M.E.; Nugent, M.W.; Spencer, L.E.; Curry, A.B.; Finn, J.R.; Orourke, A.E.; Fritsche, R.F. Smart crop farming systems for Artemis exploration missions. Am. Soc. Grav. Space Res. 2021, 37, 1. [Google Scholar]
- Massa, G.D.; Dufour, N.F.; Carver, J.A.; Hummerick, M.E.; Wheeler, R.M.; Morrow, R.C.; Smith, T.M. VEG-01: Veggie hardware validation testing on the international space station. Open Agric. 2017, 2, 33–41. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental impacts of urban hydroponics in Europe: A case study in Lyon. Procedia CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegelmeier, A.A.; Rose, D.M.; Joris, B.R.; Glick, B.R. The Use of PGPB to Promote Plant Hydroponic Growth. Plants 2022, 11, 2783. https://doi.org/10.3390/plants11202783
Stegelmeier AA, Rose DM, Joris BR, Glick BR. The Use of PGPB to Promote Plant Hydroponic Growth. Plants. 2022; 11(20):2783. https://doi.org/10.3390/plants11202783
Chicago/Turabian StyleStegelmeier, Ashley A., Danielle M. Rose, Benjamin R. Joris, and Bernard R. Glick. 2022. "The Use of PGPB to Promote Plant Hydroponic Growth" Plants 11, no. 20: 2783. https://doi.org/10.3390/plants11202783
APA StyleStegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The Use of PGPB to Promote Plant Hydroponic Growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783