Mung Bean (Vigna radiata) Treated with Magnesium Nanoparticles and Its Impact on Soilborne Fusarium solani and Fusarium oxysporum in Clay Soil
<p>The fungal growth inhibition (FGI%) of MgONPs at different concentrations (25, 50, and 100 µg/mL) on <span class="html-italic">F. solani</span> and <span class="html-italic">F. oxysporum</span> on NA media. <sup>a–f</sup> Columns with different superscripts are significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>The impact of MgONPs on the growth of mung bean seedlings: A: a concentration of 100 µg/mL; B: a concentration of 50 µg/mL; C: a concentration of 25 µg/mL; and D: only water.</p> "> Figure 3
<p>The impact of MgONPs on the disease severity of (<b>A</b>) <span class="html-italic">F. solani</span> (<b>B</b>) and <span class="html-italic">F. oxysporum</span> (<b>C</b>) in mung bean plants. <sup>a–h</sup> Columns with different superscripts are significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Flowchart diagram of the green synthesis of MgO-NPs using rosemary flower extract (source: [<a href="#B33-plants-11-01514" class="html-bibr">33</a>]).</p> ">
Abstract
:1. Introduction
2. Results
2.1. In Vitro Inhibitory Effect of MgONPs on F. solani and F. oxysporum
2.2. Impacts of MgONPs on Mung Bean Plants
2.3. The Impact of MgONPs on the Disease Severity of Fusarium solani and Fusarium oxysporum in Mung Bean Seedlings
2.4. Soil Microbial Biomass and Resistance Index after Mung Bean Harvest
3. Discussion
4. Materials and Methods
4.1. Preparation of Nanoparticles
4.2. Fungi Associated with Wilted Mung Bean Plants
4.3. Isolation of Root Nodule Bacterium
4.4. Analysis of Soil Properties
4.5. In Vitro Evaluation of the Antifungal Activity of MgONPs against Fusarium solani and Fusarium oxysporum
4.5.1. Linear Growth
4.5.2. Pathogenicity Test
4.5.3. Disease Index of Foliar Browning
4.6. In Vivo Effect of MgONPs on the Development of Vascular Wilt in Mung Bean Seedlings Inoculated with Fusarium oxysporum and Fusarium solani
4.7. Soil Incubation Experiment after Mung Bean Harvest
4.7.1. Analyses of Soil Biological Properties
Total Bacteria and Total Fungi and Soil Resistance Index (SRI)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilyas, N.; Ambreen, F.; Batool, N.; Arshad, M.; Mazhar, R.; Bibi, F.; Saeed, M. Contribution of Nitrogen Fixed by Mung Bean to the Following Wheat Crop. Commun. Soil Sci. Plant Anal. 2018, 49, 148–158. [Google Scholar] [CrossRef]
- Nair, R.M.; Schafleitner, R.; Kenyon, L.; Srinivasan, R.; Easdown, W.; Ebert, R.W. Genetic improvement of mung bean. SABRAO J. Breed. Genet. 2012, 44, 177–190. [Google Scholar]
- Twidwell, E.K.; Boe, A.; Kephart, K.D. Planting date effects on yield and quality of foxtail millet and three annual legumes. Can. J. Plant Sci. 1992, 72, 819–823. [Google Scholar] [CrossRef]
- Hozayn, M.; El-Habbasha, S.F.; Abd El-Lateef, E.M.; Abd El-Monem, A.A. Genetic variability in 16 exotic mung bean genotypes for late sowing under Egyptian conditions. J. Appl. Sci. Res. 2013, 9, 643–651. [Google Scholar]
- El-Argawy, E.; Rahhal, M.M.H.; El-Korany, A.; Elshabrawy, E.M.; Eltahan, R.M. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-behiera governorate. Asian J. Plant Pathol. 2017, 11, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Shabbier, D.; Ahmad, P.; Khandaker, M.U.; Faruque MR, I.; Din, I. Biosynthesis and antibacterial activity of MgONPs produced from Camellia-sinensis leaves extract. Mater. Res. Express 2021, 8, 015402. [Google Scholar] [CrossRef]
- Kong, F.; Wang, J.; Han, R.; Ji, S.; Yue, J.; Wang, Y.; Ma, L. Antifungal Activity of Magnesium Oxide Nanoparticles: Effect on the Growth and Key Virulence Factors of Candida albicans. Mycopathologia 2020, 185, 485–494. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Yadav, D.R.; Lee, Y.S. Applications of nickel nanoparticles for control of fusarium wilt on lettuce and tomato. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 7378–7385. [Google Scholar]
- Dizaj, S.M.; Lotfpour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Abdel-Rahman, M.A.; EL-Belely, E.F.; Awad, M.A.; Hassan, S.E.-D.; AL-Faifi, Z.E.; Hamza, M.F. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front. Bioeng. Biotechnol. 2022, 10, 849921. [Google Scholar] [CrossRef]
- Nguyen, N.Y.T.; Grelling, N.; Wetteland, C.L. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 16260. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Akhtar, M.N.; Ashraf, N. Green synthesis of Magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl. Nanosci. 2020, 10, 2351–2364. [Google Scholar] [CrossRef]
- Ouda, S.M. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res. J. Microbiol. 2011, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Ammulu, M.A.; Viswanath, K.V.; Giduturi, A.K.; Vemuri, P.K.; Mangamuri, U.; Poda, S. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. J. Genet. Eng. Biotechnol. 2021, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhou, L.; Rajoka, M.S.R.; Dongyan, S.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; et al. Fungal silver nanoparticles: Synthesis, application and challenges. Crit. Rev. Biotechnol. 2017, 38, 817–835. [Google Scholar] [CrossRef]
- Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 2011, 13, 6877–6885. [Google Scholar] [CrossRef]
- Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016, 65, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Sun, S.; Zhu, L.; Duan, C.; Zhu, Z. Confirmation of Fusarium oxysporum as a causal agent of mung bean wilt in China. Crop Protect. 2019, 117, 77–85. [Google Scholar] [CrossRef]
- Lipșa, F.-D.; Ursu, E.-L.; Ursu, C.; Ulea, E.; Cazacu, A. Evaluation of the Antifungal Activity of Gold–Chitosan and Carbon Nanoparticles on Fusarium oxysporum. Agronomy 2020, 10, 1143. [Google Scholar] [CrossRef]
- Matei, P.M.; Iacomi, B.M.; Martín-Gil, J.; Pérez-Lebeña, E.; Ramos-Sánchez, M.C.; Barrio-Arredondo, M.T.; Martín-Ramos, P. In vitro antifungal activity of composites of AgNPs and polyphenol inclusion compounds against Fusarium culmorum in different dispersion media. Agronomy 2018, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, H. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int. Food Res. J. 2016, 232, 446–463. [Google Scholar]
- Rahimi, H.; Doostmohammadi, M. Nanoparticle Synthesis, Applications, and Toxicity. In Applications of Nanobiotechnology; Stoytcheva, M., Zlatev, R., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Asghar, M.A.; Zahir, E.; Shahid, S.M.; Khan, M.N.; Iqbal, J.; Walker, G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. Lebensm.-Wiss. Technol. 2018, 90, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Shenashen, M.; Derbalah, A.; Hamza, A.; Mohamed, A.; El Safty, S. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag. Sci. 2017, 73, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.; Hai, T.N.; Thi, M.C.; Le, V.H. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J. Nanomater. 2016, 2016, 1957612. [Google Scholar] [CrossRef] [Green Version]
- Akpinar, I.; Unal, M.; Sar, T. Potential antifungal effects of silver nanoparticles (AgNPs) of different sizes against phytopathogenic Fusarium oxysporum F. sp. radicis-lycopersici (FORL) strains. SN Appl. Sci. 2021, 3, 506. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Ren, J.; Ma, X.; Tan, W.; Wang, X.; Gao, J.; Hou, A. Short-term response of the soil microbial abundances and enzyme activities to experimental warming in a boreal peatland in northeast china. Sustainability 2019, 11, 590. [Google Scholar] [CrossRef] [Green Version]
- VandeVoort, A.R.; Arai, Y. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar]
- Gupta, C.; Prakash, D. Effect of soil fertilizers on soil microflora. Ann. Plant Sci. 2020, 9, 3846–3859. [Google Scholar] [CrossRef]
- Taran, N.Y.; Gonchar, O.M.; Lopatko, K.G. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res. Lett. 2014, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, Y.; Ogunyemi, S.O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Fouad, H.; Bin, L.; Chen, J. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. Oryzae. BioMed Res. Int. 2019, 2019, 5620989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques Pinto, C.; Yao, P.Y.; Vincent, J.M. Nodulating competitiveness amonst Strains of Rizobium mellioti and R. trifolli. Aust. J. Agric. Res. 1974, 25, 317–329. [Google Scholar] [CrossRef]
- Skinner, F.; Lotz, W.; Lang, D. Electron microscope study length and partial denaturation of Rizobium bacteriophage DNA. J. Virol. 1973, 11, 946–952. [Google Scholar]
- Hammad, A.M.M. Acomparative study of Bacteriophage of Rizobium leguminosarum in Soil of Egypt and Scotland. Ph.D. Thesis, Faculty of Agriculture, Minia University, El-Minya, Egypt, 1989. [Google Scholar]
- Abd El-Azeim, M.M.; Sherif, M.A.; Hussien, M.S.; Tantawy, I.A.A.; Bashandy, S.O. Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecol. Sin. 2020, 40, 388. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Harrisburg, PA, USA, 1973. [Google Scholar]
- Page, A.L. (Ed.) Method of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Bomfim, N.d.; Nakassugi, L.P.; Oliveira, J.F.P.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Filho, B.A.A.; Machinski, M. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Gabr, M.R.; Saleh, O.L.; Hussein, N.A.; Khalil, M.A. Physiological studies and cell-wall degrading enzymes of Fusarium oxysporum f.sp sesame and Macrophomina phaseolina: The causal organisms of wilt and root rot diseases of sesame. Egypt. J. Microbiol. 1998, 33, 595–610. [Google Scholar]
- Song, W.; Zhou, L.; Yang, C.; Cao, X.; Liu, Z.X. Tomato Fusarium wilt and its chemical control strategies in hydroponic system. Crop. Prot. 2004, 23, 243–247. [Google Scholar] [CrossRef]
- Alef, K. 4—Enrichment, isolation and counting of soil microorganisms. Methods Appl. Soil Microbiol. Biochem. 1995, 4, 123–191. [Google Scholar] [CrossRef]
- Orwin, K.H.; Wardle, D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbance. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
Treatments | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Shoot Length (cm) | Root Fresh Weight (g) | Root Dry Weight (g) | Root Length (cm) | Root Nodule (n) |
---|---|---|---|---|---|---|---|
Control | 5.10 ± 0.08 c | 0.81 ± 0.01 d | 24.00 ± 0.73 e | 1.80 ± 0.08 d | 0.60 ± 0.08 e | 9.10 ± 0.08 ed | 8.00 ± 0.81 fg |
MgONPs 25 µg/mL | 5.50 ± 0.32 c | 1.03 ± 0.12 c | 27.66 ± 0.47 c | 2.00 ± 0.08 c | 0.65 ± 0.01 c | 10.86 ± 0.18 cd | 11.66 ± 0.47 d |
MgONPs 50 µg/mL | 5.93 ± 0.73 b | 1.12 ± 0.08 b | 30.00 ± 0.81 b | 2.21 ± 0.01 b | 0.71 ± 0.08 b | 14.20 ± 0.21 b | 13.33 ± 0.47 b |
MgONPs 100 µg/mL | 6.56 ± 0.49 a | 1.50 ± 0.01 a | 35.00 ± 0.81 a | 2.50 ± 0.08 a | 0.80 ± 0.01 a | 18.06 ± 0.17 a | 13.66 ± 0.47 a |
F. solani | 2.43 ± 0.09 g | 0.313 ± 0.09 i | 14.5 ± 0.40 i | 0.75 ± 0.04 g | 0.25 ± 0.08 i | 4.80 ± 0.08 g | 3.33 ± 0.47 i |
MgONPs 25 µg/mL + F. solani | 3.80 ± 0.08 e | 0.586 ± 0.01 g | 20.16 ± 0.62 g | 1.59 ± 0.04 e | 0.50 ± 0.08 g | 8.00 ± 0.12 e | 7.66 ± 0.47 g |
MgONPs 50 µg/mL + F. solani | 3.91 ± 0.08 e | 0.650 ± 0.09 f | 22.00 ± 0.81 f | 1.70 ± 0.08 ed | 0.55 ± 0.04 f | 9.03 ± 0.04 ed | 8.33 ± 0.47 f |
MgONPs 100 µg/mL + F. solani | 4.20 ± 0.08 de | 0.680 ± 0.01 ef | 24.00 ± 0.40 e | 1.74 ± 0.04 cd | 0.59 ± 0.01 ef | 9.76 ± 0.08 d | 9.33 ± 0.47 e |
F. oxysporum | 3.00 ± 0.16 f | 0.41 ± 0.01 h | 18.00 ± 0.40 h | 1.10 ± 0.08 f | 0.30 ± 0.04 h | 5.10 ± 0.08 f | 4.00 ± 0.81 h |
MgONPs 25 µg/mL + F. oxysporum | 4.36 ± 0.12 de | 0.700 ± 0.01 e | 22.00 ± 0.62 f | 1.77 ± 0.04 cd | 0.60 ± 0.01 e | 10.00 ± 0.32 d | 9.34 ± 0.47 e |
MgONPs 50 µg/mL + F. oxysporum | 4.50 ± 0.08 de | 0.730 ± 0.01 ed | 25.00 ± 0.81 ed | 1.82 ± 0.08 cd | 0.63 ± 0.04 d | 11.00 ± 0.08 c | 11.33 ± 0.47 d |
MgONPs 100 µg/mL + F. oxysporum | 4.70 ± 0.08 d | 0.753 ± 0.01 ed | 26.00 ± 0.81 d | 1.91 ± 0.08 cd | 0.64 ± 0.01 d | 11.50 ± 0.08 c | 12.66 ± 0.47 c |
Soil Resistance Index (SRI) and Total Counts of Bacteria and Fungi | ||||
---|---|---|---|---|
Treatment | Total Counts of Bacteria (×106 cfu g−1) | SRI | Total Counts of Fungi (×104 cfu g−1) | SRI |
Control | 62.63 a | 1.00 | 46.30 a | 1.00 |
MgONPs 25 µg/mL | 59.87 a | 0.926 | 44.73 ab | 0.935 |
MgONPs 50 µg/mL | 44.60 cd | 0.553 | 26.23 d | 0.395 |
MgONPs 100 µg/mL | 38.77 e | 0.448 | 16.33 e | 0.214 |
F. solani | 47.23 c | 0.605 | 38.77 bc | 0.720 |
F. oxysporum | 55.23 b | 0.789 | 40.03 abc | 0.762 |
MgONPs 25 µg/mL + F. solani | 40.70 de | 0.481 | 19.83 de | 0.273 |
MgONPs 50 µg/mL + F. solani | 45.97 cd | 0.580 | 37.67 c | 0.686 |
MgONPs 100 µg/mL + F. solani | 46.33 c | 0.587 | 33.97 c | 0.579 |
MgONPs 25 µg/mL + F. oxysporum | 47.23 c | 0.622 | 39.17 bc | 0.731 |
MgONPs 50 µg/mL + F. oxysporum | 54.73 b | 0.779 | 41.13 abc | 0.757 |
MgONPs 100 µg/mL + F. oxysporum | 46.23 c | 0.603 | 37.77 bc | 0.710 |
L.S.D 0.05 | 7.331 | 0.304 | 7.512 | 0.321 |
Soil Property | |||
---|---|---|---|
Soil Chemical Properties | Soil Physical Properties | ||
pH (1:2.5 water) | 7.7 | F.C% | 42.45 |
EC (dS m−1 at 25 °C) | 1.35 | PWP% | 13.78 |
CEC (cmolc kg−1) | 37.87 | WHC% | 48.76 |
O.M (g kg−1) | 28.61 | A.V (F.C-PWP) % | 28.67 |
Total N (g kg−1) | 1.29 | Clay (%) | 56.45 |
Total C/N Ratio | 22.18 | Sand (%) | 17.76 |
S.O.C g kg−1 | 18.48 | Silt (%) | 25.79 |
Total P (g kg−1) | 0.56 | Soil texture | Clay |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, Y.; Hussien, M.; Omar, M.O.A.; Elashmony, R.M.S.; Alkhalifah, D.H.M.; Hozzein, W.N. Mung Bean (Vigna radiata) Treated with Magnesium Nanoparticles and Its Impact on Soilborne Fusarium solani and Fusarium oxysporum in Clay Soil. Plants 2022, 11, 1514. https://doi.org/10.3390/plants11111514
Abdallah Y, Hussien M, Omar MOA, Elashmony RMS, Alkhalifah DHM, Hozzein WN. Mung Bean (Vigna radiata) Treated with Magnesium Nanoparticles and Its Impact on Soilborne Fusarium solani and Fusarium oxysporum in Clay Soil. Plants. 2022; 11(11):1514. https://doi.org/10.3390/plants11111514
Chicago/Turabian StyleAbdallah, Yasmine, Marwa Hussien, Maha O. A. Omar, Ranya M. S. Elashmony, Dalal Hussien M. Alkhalifah, and Wael N. Hozzein. 2022. "Mung Bean (Vigna radiata) Treated with Magnesium Nanoparticles and Its Impact on Soilborne Fusarium solani and Fusarium oxysporum in Clay Soil" Plants 11, no. 11: 1514. https://doi.org/10.3390/plants11111514
APA StyleAbdallah, Y., Hussien, M., Omar, M. O. A., Elashmony, R. M. S., Alkhalifah, D. H. M., & Hozzein, W. N. (2022). Mung Bean (Vigna radiata) Treated with Magnesium Nanoparticles and Its Impact on Soilborne Fusarium solani and Fusarium oxysporum in Clay Soil. Plants, 11(11), 1514. https://doi.org/10.3390/plants11111514