A Review: Phase Measurement Techniques Based on Metasurfaces
<p>(<b>a</b>) Schematic of the concept for spin-dependent function control. (<b>b</b>) Schematic of the designed all-dielectric metasurface spatial filter. (<b>c</b>) Traditional bright field and spiral phase contrast images of the undyed onion epidermal cells captured with LCP and RCP incident light at the wavelength of 480, 530, 580, and 630 nm [<a href="#B49-photonics-11-00996" class="html-bibr">49</a>]. (<b>d</b>) Schematic illustration of the spiral metalens with a simplified optical system. (<b>e</b>) Unit cell structure description with tilted and top views. (<b>f</b>) Bright-field images of erythrocytes with ×50 objective lens and edge-enhanced images with the spiral metalens at 497, 532, 580, and 633 nm wavelengths [<a href="#B50-photonics-11-00996" class="html-bibr">50</a>]. (<b>g</b>) Sketch of the experimental setup for simultaneous spiral phase contrast and bright-field imaging. (<b>h</b>) Schematic diagram of the designed dielectric metasurface for synchronously spiral phase contrast and bright-field imaging. (<b>i</b>) Synchronously captured spiral phase contrast and bright field images of “META” and unstained limewood stem cells in the same field of view [<a href="#B51-photonics-11-00996" class="html-bibr">51</a>].</p> "> Figure 2
<p>(<b>a</b>) Schematic of the Nanophotonics Enhanced Coverslip (NEC) phase image system at 637 nm. (<b>b</b>) Schematic of the NEC. (<b>c</b>–<b>e</b>) Phase imaging of HeLa cells with NEC, conventional DIC and fluorescence [<a href="#B52-photonics-11-00996" class="html-bibr">52</a>]. (<b>f</b>) Schematic of phase imaging using spin-orbit coupling enabled by plasmonic metasurface. (<b>g</b>–<b>h</b>) Phase imaging of the eggcrate pattern with metasurface and without metasurface [<a href="#B53-photonics-11-00996" class="html-bibr">53</a>].</p> "> Figure 3
<p>(<b>a</b>) The schematic for high-resolution, widefield measurement of phase alterations introduced by plasmonic metasurfaces. The metasurface acts as a geometric phase grating (GPG). (<b>b</b>) Amplitude and phase image of a vortex LG beam metasurface [<a href="#B56-photonics-11-00996" class="html-bibr">56</a>]. (<b>c</b>) Schematic of the metasurface, which is composed of rectangular TiO<sub>2</sub> nanopillars on a fused silica substrate. (<b>d</b>) Schematic of common path digital holographic system for quantitative phase imaging with a singlelayer metasurface. (<b>e</b>) Experimental demonstration of digital holography on test object: object, image plane hologram, phase map, and the height along white line [<a href="#B57-photonics-11-00996" class="html-bibr">57</a>].</p> "> Figure 4
<p>(<b>a</b>) Schematic of the QPGM employing two metasurface layers. (<b>b</b>) Schematics of a uniform array of rectangular nanoposts (top) and a single unit cell (bottom). (<b>c</b>) Optical images of the fabricated metasurfaces. (<b>d</b>) Thicknesses of seven different phase targets calculated by the QPGM, and those measured by AFM. (<b>e</b>) Schematic of a sea urchin cell and its corresponding phase gradient images. Scale bars, 40 μm [<a href="#B58-photonics-11-00996" class="html-bibr">58</a>].</p> "> Figure 5
<p>(<b>a</b>) Experiment setup of the proposed FOSSM. Obj, object. P, polarizer. L, lens.MS, metasurface. A, analyzer. (<b>b</b>) The concept of retardance imaging of the object with a laterally (along the x direction) and a longitudinally (along the z direction) displaced metasurface. (<b>c</b>) Quantitative phase imaging of NIH3T3 cells with a laterally displaced metasurface [<a href="#B59-photonics-11-00996" class="html-bibr">59</a>]. (<b>d</b>) Schematic of single-shot quantitative amplitude and phase imaging based on a pair of dielectric geometric phase metasurfaces. (<b>e</b>) Designed geometric phases of two metasurfaces. (<b>f</b>) Amplitude and phase of the object reconstructed by using a series of retardance images. (<b>g</b>) Recovered amplitude and phase of SKNO-1 cells [<a href="#B60-photonics-11-00996" class="html-bibr">60</a>].</p> "> Figure 6
<p>(<b>a</b>) The experimental setup optical vector differential operations based on computing metasurfaces. Path 1 in the Mach−Zehnder interferometer performs the differential operation in the x direction, and path 2 does the differential operation in the y direction. (<b>b</b>) Imaging results of fishtail cross-cut cells with broadband vectorial DIC microscopy. Bright-field images and DIC microscopy images for different wavelengths [<a href="#B61-photonics-11-00996" class="html-bibr">61</a>]. (<b>c</b>) Schematic of the metalens-assisted single-shot complex amplitude imaging system. Captured x and y shearing interference patterns with the polarization channel along 0°, 45°, 90°, and 135°, respectively. (<b>d</b>) Calculated phase gradients along the x and y direction, respectively. (<b>e</b>) Surface morphology of UV adhesive measured by the metalens-assisted system and a commercial white light interferometer (WLI) [<a href="#B62-photonics-11-00996" class="html-bibr">62</a>].</p> "> Figure 7
<p>(<b>a</b>) Schematic of the 2D edge detection and metasurface. The light incidents onto the “EDGE” shaped object, and then passes through the metasurface at the Fourier plane, and finally, its edge information is obtained at the image plane. (<b>b</b>) Edge detection of the human umbilical vein endothelial cell (first row) and bronchial epithelial cell (second row). The imaging methods are bright field, phase contrast, dark field and bright field and edge detection from left to right successively [<a href="#B63-photonics-11-00996" class="html-bibr">63</a>]. (<b>c</b>) Principle of metasurface-assisted i-DIC microscopy and Si meta-atom. (<b>d</b>) Imaging results with a-DIC and i-DIC microscopy [<a href="#B64-photonics-11-00996" class="html-bibr">64</a>].</p> "> Figure 8
<p>(<b>a</b>) Schematic diagram of the metasurface (MS)-based quantitative phase imaging setup (MS-TIE). L1 and L2 form a 4f optical setup. The metasurface is placed at the Fourier plane and acts as a polarization-dependent optical filter. (<b>b</b>) Unit cell of the metasurface consisting of amorphous silicon nanopillars on a fused silica substrate. (<b>c</b>) Contrast phase imaging error between metasurfaces and traditional TIE method [<a href="#B65-photonics-11-00996" class="html-bibr">65</a>]. (<b>d</b>) Schematic diagram of triple Transport of Intensity Equation phase retrieval based on anisotropic metasurface. One image is in focus, two images are defocus, and the defocus distance is fixed and conjugate. (<b>e</b>) Schematic of meta-atom and scanning electron microscope (SEM) image of metasurface. (<b>f</b>) The experimental phase-only object results. Target phase map, the single-shot captured triple images via metasurface, and the reconstructed phase image based on TTIE algorithm [<a href="#B66-photonics-11-00996" class="html-bibr">66</a>].</p> "> Figure 9
<p>(<b>a</b>) Schematics of the dispersive metalens-based QPI. (<b>b</b>) Photograph of the meta-microscope (length: 36 mm, width: 36 mm, and height: 14 mm). (<b>c</b>) Measured intensity distributions of the longitudinal light-field cross-sections at targeted wavelengths. (<b>d</b>) Reconstructed in-focus phase profiles of the 4T1 cells from the image stack obtained by the meta-microscope. Scale bar is 20 μm [<a href="#B67-photonics-11-00996" class="html-bibr">67</a>].</p> "> Figure 10
<p>(<b>a</b>) Measurement protocol based on asymmetric metasurface photodetectors, where the sensor array is partitioned into blocks of four adjacent pixels coated with the asymmetric metasurface oriented along four orthogonal directions. (<b>b</b>) Reconstructed phase distribution of the MCF-10A cell [<a href="#B68-photonics-11-00996" class="html-bibr">68</a>]. (<b>c</b>) Schematic of phase imaging system using non-local metasurfce (NLM). (<b>d</b>) Phase imaging results with Zernike’s method and NLM [<a href="#B69-photonics-11-00996" class="html-bibr">69</a>].</p> "> Figure 11
<p>(<b>a</b>) Design principle of meta Shack–Hartmann wavefront sensor. (<b>b</b>) Phase imaging results: object and reconstructed phase [<a href="#B71-photonics-11-00996" class="html-bibr">71</a>]. (<b>c</b>) The wavefront sensor consists of a CCD, an MA, and two linear polarizers and can operate at both 950 nm and 1030 nm. (<b>d</b>) Experimental demonstration of the spot centroid shift in the x-y plane and the corresponding reconstructed wavefront at 950 nm [<a href="#B72-photonics-11-00996" class="html-bibr">72</a>].</p> "> Figure 12
<p>(<b>a</b>) Schematics of experimental setup of phase and amplitude reconstruction by weak measurement. (<b>b</b>) Phase imaging results: object and reconstructed phase [<a href="#B76-photonics-11-00996" class="html-bibr">76</a>]. (<b>c</b>) Schematic illustration of computational complex field retrieval using a designed metasurface diffuser (MD). (<b>d</b>) Phase imaging results: object and reconstructed phase [<a href="#B77-photonics-11-00996" class="html-bibr">77</a>].</p> ">
Abstract
:1. Introduction
2. Non-Quantitative Phase Measurement
3. Quantitative Phase Measurement
3.1. Interference Methods
3.2. Non-Interference Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Nederland, 2013. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Stratton, J.A. Electromagnetic Theory; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 33. [Google Scholar]
- Hecht, E. Optics; Pearson Education India: Bangalore, India, 2012. [Google Scholar]
- Chen, S.; Xue, S.; Zhai, D.; Tie, G. Measurement of freeform optical Surfaces: Trade-off between accuracy and dynamic range. Laser Photonics Rev. 2020, 14, 1900365. [Google Scholar] [CrossRef]
- Chen, S.; Dai, Y.; Zhai, D.; Xiong, Y. Quasi-absolute interferometric testing of cylinders. Opt. Lett. 2022, 47, 2278–2281. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Zhou, R.; Mir, M.; Babacan, S.D.; Carney, P.S.; Goddard, L.L.; Popescu, G. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 2014, 8, 256–263. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kandel, M.E.; Rubessa, M.; Wheeler, M.B.; Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 2017, 8, 210. [Google Scholar] [CrossRef]
- Taylor, R.W.; Mahmoodabadi, R.G.; Rauschenberger, V.; Giessl, A.; Schambony, A.; Sandoghdar, V. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 2019, 13, 480–487. [Google Scholar] [CrossRef]
- Tamamitsu, M.; Toda, K.; Horisaki, R.; Ideguchi, T. Quantitative phase imaging with molecular vibrational sensitivity. Opt. Lett. 2019, 44, 3729–3732. [Google Scholar] [CrossRef]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Sun, J.; Wu, J.; Wu, S.; Goswami, R.; Girardo, S.; Cao, L.; Guck, J.; Koukourakis, N.; Czarske, J.W. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci. Appl. 2022, 11, 204. [Google Scholar] [CrossRef]
- Cotte, Y.; Toy, F.; Jourdain, P.; Pavillon, N.; Boss, D.; Magistretti, P.J.; Marquet, P.; Depeursinge, C. Marker-free phase nanoscopy. Nat. Photonics 2013, 7, 113–117. [Google Scholar] [CrossRef]
- Merola, F.; Memmolo, P.; Miccio, L.; Savoia, R.; Mugnano, M.; Fontana, A.; D′Ippolito, G.; Sardo, A.; Iolascon, A.; Gambale, A.; et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 2016, 6, e16241. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Deng, W.; Chen, S. Intelligence enhancement of the adaptive wavefront interferometer. Opt. Express 2019, 27, 11084–11102. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Chen, S.; Fan, Z.; Zhai, D. Adaptive wavefront interferometry for unknown free-form surfaces. Opt. Express 2018, 26, 21910–21928. [Google Scholar] [CrossRef]
- Lane, R.G.; Tallon, M. Wave-front reconstruction using a Shack-Hartmann sensor. Appl. Opt. 1992, 31, 6902–6908. [Google Scholar] [CrossRef]
- Ragazzoni, R.; Diolaiti, E.; Vernet, E. A pyramid wavefront sensor with no dynamic modulation. Opt. Commun. 2002, 208, 51–60. [Google Scholar] [CrossRef]
- Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 1942, 9, 686–698. [Google Scholar] [CrossRef]
- Zernike, F. How I Discovered Phase Contrast. Science 1955, 121, 345–349. [Google Scholar] [CrossRef]
- Nomarski, G.M. Differential microinterferometer with polarized waves. J. Phys. Radium Paris 1955, 16, 9S. [Google Scholar]
- Fried, D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 1966, 56, 1372–1379. [Google Scholar] [CrossRef]
- Brown, A.F.; Dunn, G.A. Microinterferometry of the movement of dry matter in fibroblasts. J. Cell Sci. 1989, 92, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Black, A.N.; Nguyen, L.D.; Braverman, B.; Crampton, K.T.; Evans, J.E.; Boyd, R.W. Quantum-enhanced phase imaging without coincidence counting. Optica 2023, 10, 952–958. [Google Scholar] [CrossRef]
- Teague, M.R. Irradiance moments: Their propagation and use for unique retrieval of phase. J. Opt. Soc. Am. 1982, 72, 1199–1209. [Google Scholar] [CrossRef]
- Teague, M.R. Deterministic phase retrieval: A Green’s function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Bock, M.; Das, S.K.; Fischer, C.; Diehl, M.; Börner, P.; Grunwald, R. Reconfigurable wavefront sensor for ultrashort pulses. Opt. Lett. 2012, 37, 1154–1156. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Y.; Zheng, M.; Chen, H.; Zang, Y.; Duan, H.; Li, Q.; Qiu, M.; Hu, Y. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Huo, P.; Song, M.; Zhu, W.; Zhang, C.; Chen, L.; Lezec, H.J.; Lu, Y.; Agrawal, A.; Xu, T. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 2020, 7, 1171–1172. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Hu, Y.; Lai, J.; Wang, S.; Yang, P.; Li, X.; Duan, H. Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible. Laser Photonics Rev. 2021, 15, 2100198. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, Y.; Zhang, Y.; Yang, X.; Ou, X.; Li, L.; Kong, X.; Liu, X.; Qiu, C.-W.; Duan, H. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun. 2023, 14, 6649. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, X.; Chen, Y.; Liu, Q.; Li, X.; Wang, Y.; Liu, N.; Duan, H. 3D-Integrated metasurfaces for full-colour holography. Light Sci. Appl. 2019, 8, 86. [Google Scholar] [CrossRef]
- So, S.; Kim, J.; Badloe, T.; Lee, C.; Yang, Y.; Kang, H.; Rho, J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv. Mater. 2023, 35, 2208520. [Google Scholar] [CrossRef]
- Bao, Y.; Ni, J.; Qiu, C.W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater. 2020, 32, 1905659. [Google Scholar] [CrossRef]
- Wang, D.; Liu, F.; Liu, T.; Sun, S.; He, Q.; Zhou, L. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl. 2021, 10, 67. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Kravchenko, I.I.; Valentine, J. Flat optics for image differentiation. Nat. Photonics 2020, 14, 316–323. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 2022, 11, 158. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Z.; Xie, P.; Cai, D.; Meng, F.; Wang, C.; Wu, Q.; Liu, J.; Burokur, S.N.; Hu, G. Metasurface-Based Optical Logic Operators Driven by Diffractive Neural Networks. Adv. Mater. 2024, 36, 2308993. [Google Scholar] [CrossRef]
- Zernike, F. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Mon. Not. R. Astron. Soc. 1934, 94, 377–384. [Google Scholar] [CrossRef]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Upgrading a microscope with a spiral phase plate. J. Microsc. 2008, 230, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, G.; Sung, J.; Jang, J.; Lee, B. Spiral Metalens for Phase Contrast Imaging. Adv. Funct. Mater. 2022, 32, 2106050. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, P.; Huo, P.; Liu, M.; Ren, Y.; Zhang, S.; Zhou, Q.; Wang, Y.; Lu, Y.-Q.; Xu, T. Dielectric Metasurface for Synchronously Spiral Phase Contrast and Bright-Field Imaging. Nano Lett. 2023, 23, 2991–2997. [Google Scholar] [CrossRef]
- Wesemann, L.; Rickett, J.; Song, J.C.; Lou, J.; Hinde, E.; Davis, T.J.; Roberts, A. Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci. Appl. 2021, 10, 98. [Google Scholar] [CrossRef]
- Wesemann, L.; Rickett, J.; Davis, T.J.; Roberts, A. Real-time phase imaging with an asymmetric transfer function metasurface. ACS Photonics 2022, 9, 1803–1807. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef]
- Goodman, J.W. Digital image formation from electronically detected holograms. In Proceedings of SPIE, San Jose, CA, USA, 1 July 1967; Volume 0010, pp. 176–181. [Google Scholar]
- Bouchal, P.; Dvořák, P.; Babocký, J.; Bouchal, Z.; Ligmajer, F.; Hrtoň, M.; Křápek, V.; Faßbender, A.; Linden, S.; Chmelík, R.; et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 2019, 19, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Sardana, J.; Devinder, S.; Zhu, W.; Agrawal, A.; Joseph, J. Dielectric Metasurface Enabled Compact, Single-Shot Digital Holography for Quantitative Phase Imaging. Nano Lett. 2023, 23, 11112–11119. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Arbabi, E.; Kamali, S.M.; Faraji-Dana, M.; Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 2020, 14, 109–114. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Zhao, J.; Posner, C.; Lei, M.; Chen, G.; Zhang, J.; Liu, Z. Fourier optical spin splitting microscopy. Phys. Rev. Lett. 2022, 129, 020801. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, J.; Chen, X.; Zhao, J.; Lei, M.; Chen, G.; Lo, Y.H.; Liu, Z. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 2023, 10, 619–625. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; He, S.; Wang, R.; Luo, H. Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics 2023, 10, 2201–2207. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhao, F.; Zhang, Y.; Wen, S.; Chai, H.; Gao, Y.; Wang, W.; Cao, L.; Yang, Y. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. 2024, 10, eadl0501. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, H.; Zhao, J.; Tang, M.; Wu, Q.; Lei, M.; Luo, H.; Wen, S.; Chen, S.; Liu, Z. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev. 2021, 8, nwaa176. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wang, J.; Liu, X.; Hao, H.; Tan, Y.S.; Zhang, Y.; Zhang, H.; Ding, X.; Zhao, W.; et al. Single-shot isotropic differential interference contrast microscopy. Nat. Commun. 2023, 14, 2063. [Google Scholar] [CrossRef]
- Engay, E.; Huo, D.; Malureanu, R.; Bunea, A.-I.; Lavrinenko, A. Polarization-Dependent All-Dielectric Metasurface for Single-Shot Quantitative Phase Imaging. Nano Lett. 2021, 21, 3820–3826. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Ullah, N.; Geng, G.; Li, J.; Li, X.; Wang, Y.; Huang, L. Single-shot phase retrieval based on anisotropic metasurface. Appl. Phys. Lett. 2022, 120, 161702. [Google Scholar] [CrossRef]
- Wang, J.; Yu, R.; Ye, X.; Sun, J.; Li, J.; Huang, C.; Xiao, X.; Ji, J.; Shen, W.; Tie, Z.; et al. Quantitative phase imaging with a compact meta-microscope. npj Nanophotonics 2024, 1, 4. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Li, Y.; Tian, L.; Paiella, R. Asymmetric metasurface photodetectors for single-shot quantitative phase imaging. Nanophotonics 2023, 12, 3519–3528. [Google Scholar] [CrossRef]
- Ji, A.; Song, J.H.; Li, Q.T.; Xu, F.; Tsai, C.-T.; Tiberio, R.C.; Cui, B.; Lalanne, P.; Kik, P.G.; Miller, D.A.B.; et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 2022, 13, 7848. [Google Scholar] [CrossRef]
- Go, G.H.; Lee, D.; Oh, J.; Song, G.; Lee, D.; Jang, M. Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects. Light Sci. Appl. 2024, 13, 187. [Google Scholar] [CrossRef]
- Soldevila, F.; Durán, V.; Clemente, P.; Lancis, J.; Tajahuerce, E. Phase imaging by spatial wavefront sampling. Optica 2018, 5, 164–174. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, Y.; Wei, W.; Li, L.; Wang, H.; Wang, S.; Yang, P.; Jia, H.; Duan, H. Pitch-Switchable Metalens Array for Wavefront Profiling at Multiwavelength. Adv. Opt. Mater. 2024, 12, 2302934. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Wang, Y.; Feng, X.; Zhao, M.; Wan, Z.; Zhu, L.; Liu, J.; Huang, Y.; Xia, J.; et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 2018, 9, 4607. [Google Scholar] [CrossRef]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351. [Google Scholar] [CrossRef]
- Qiu, X.; Xie, L.; Liu, X.; Luo, L.; Li, Z.; Zhang, Z.; Du, J. Precision phase estimation based on weak-value amplification. Appl. Phys. Lett. 2017, 110, 071105. [Google Scholar] [CrossRef]
- Luo, W.; Yang, Q.; Wang, Y.; Liu, J.; Luo, H. Phase and amplitude reconstruction by weak measurement based on metasurface. Appl. Phys. Lett. 2024, 124, 211702. [Google Scholar] [CrossRef]
- Kwon, H.; Arbabi, E.; Kamali, S.M.; Faraji-Dana, M.; Faraon, A. Computational complex optical field imaging using a designed metasurface diffuser. Optica 2018, 5, 924–931. [Google Scholar] [CrossRef]
Technique | Quantitative (Yes or No) | Isotropic (Yes or No) | Optical System | Accuracy/Resolution | Ref. |
---|---|---|---|---|---|
Interferometry | |||||
Holography interferometry | ✓ | - | 4f | 0.15 rad | [56] |
✓ | - | Single layer | - | [57] | |
Shearing interferometry | ✓ | O | Two layer | 2.76 μm | [58] |
✓ | O | 4f | - | [59] | |
✓ | O | Two layer | - | [60] | |
✓ | ✓ | Mach-Zehnder | 2 μm | [61] | |
✓ | ✓ | Single layer | 5.52 μm | [62] | |
✓ | ✓ | Single layer | 0.775 μm | [64] | |
Non-interferometry | |||||
Vortex phase | O | ✓ | 4f | 3.11 μm | [49] |
O | ✓ | Single layer | 0.78 μm | [50] | |
O | ✓ | Single layer | 2.2 μm | [51] | |
Asymmetric OTF | O | O | Single layer | - | [52,53] |
✓ | O | Single layer | 10 mrad | [68] | |
✓ | O | Single layer | 0.063 rad | [69] | |
TIE | ✓ | – | Single layer | 0.1 rad | [67] |
Shack–Hartmann wavefront sensor | ✓ | – | Single layer | 0.1λ | [71] |
Weak measurement | ✓ | – | 4f | - | [76] |
SSM | ✓ | – | Single layer | - | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Hu, Y.; Chen, S. A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics 2024, 11, 996. https://doi.org/10.3390/photonics11110996
Zhao Z, Hu Y, Chen S. A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics. 2024; 11(11):996. https://doi.org/10.3390/photonics11110996
Chicago/Turabian StyleZhao, Zhicheng, Yueqiang Hu, and Shanyong Chen. 2024. "A Review: Phase Measurement Techniques Based on Metasurfaces" Photonics 11, no. 11: 996. https://doi.org/10.3390/photonics11110996
APA StyleZhao, Z., Hu, Y., & Chen, S. (2024). A Review: Phase Measurement Techniques Based on Metasurfaces. Photonics, 11(11), 996. https://doi.org/10.3390/photonics11110996