Host–Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients
<p>Chemical structures of OLM (<b>a</b>) and DMβCD (<b>b</b>).</p> "> Figure 2
<p>Phase solubility diagram of OLM with DMβCD in 0.1 M phosphate buffer, pH 7.4.</p> "> Figure 3
<p>OLM/DMβCD IC simulation for 1:1 molar ratio. Images (<b>a</b>,<b>b</b>) show the supramolecular entity from the secondary face of the DMβCD cavity. OLM is represented as sticks colored by element, and DMβCD is represented by red/green/white dots (<b>a</b>); OLM is shown as spheres colored by element, and DMβCD is shown as sticks in red/green/white (<b>b</b>). Polar/hydrophobic contacts between OLM and DMβCD, where OLM is represented as sticks colored by element, and DMβCD is represented as lines (<b>c</b>). H-bond surface interaction of OLM/DMβCD (<b>d</b>).</p> "> Figure 4
<p>TG/DTG/DSC thermoanalytical curves of OLM (<b>a</b>); DMβCD (<b>b</b>); OLM/DMβCD PM (<b>c</b>); and KP (<b>d</b>) in air atmosphere.</p> "> Figure 5
<p>FTIR spectra of OLM, DMβCD, OLM/DMβCD PM, and KP.</p> "> Figure 6
<p>Diffraction profiles of OLM, DMβCD, and OLM/DMβCD binary systems PM and KP.</p> "> Figure 7
<p>UV spectra of DMβCD 150.0 µg mL<sup>−1</sup> and OLM 27.0 µg mL<sup>−1</sup> in 0.1 M phosphate buffer, pH 7.4, at 25 °C.</p> "> Figure 8
<p>TG (<b>a</b>,<b>b</b>), DTG (<b>c</b>,<b>d</b>), and DSC (<b>e</b>,<b>f</b>) curves of OLM/DMβCD IC and its mixture with pharmaceutical excipients TA and STA (<b>a</b>,<b>c</b>,<b>e</b>), and Mg STR and LA (<b>b</b>,<b>d</b>,<b>f</b>) in synthetic air atmosphere.</p> "> Figure 9
<p>UATR-FTIR spectra of (<b>a</b>) OLM/DMβCD IC, TA, STA, and the physical mixture of IC with TA and STA; (<b>b</b>) OLM/DMβCD IC, MgSTR, LA, and the mixture of IC with MgSTR and LA, recorded at ambient temperature.</p> "> Figure 10
<p>PXRD diffraction patterns of (<b>a</b>) OLM/DMβCD IC, TA, and their corresponding physical mixtures—main image; OLM/DMβCD KP + TA with 2θ values of diffraction peaks corresponding to KP—inset image; and OLM/DMβCD KP, excipients, and their mixture. (<b>b</b>) STA. (<b>c</b>) MgSTR. (<b>d</b>) LA.</p> "> Figure 10 Cont.
<p>PXRD diffraction patterns of (<b>a</b>) OLM/DMβCD IC, TA, and their corresponding physical mixtures—main image; OLM/DMβCD KP + TA with 2θ values of diffraction peaks corresponding to KP—inset image; and OLM/DMβCD KP, excipients, and their mixture. (<b>b</b>) STA. (<b>c</b>) MgSTR. (<b>d</b>) LA.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Solid Inclusion Complex and Physical Mixtures with Excipients
2.3. Phase Solubility Studies
2.4. Encapsulation Efficiency and Loading Efficiency Analysis
2.5. Molecular Modeling Studies
2.6. Thermal Investigations
2.7. FTIR Spectroscopy
2.8. Powder X-Ray Diffraction Analysis
2.9. Solubility Profile Evaluation for OLM/DMβCD Kneaded Product
3. Results and Discussion
3.1. Phase Solubility Studies
3.2. Encapsulation Efficiency and Loading Efficiency Analysis
3.3. Molecular Modeling Studies
3.4. Characterization
3.4.1. Thermal Analysis
3.4.2. FTIR Spectroscopy
3.4.3. Powder X-Ray Diffraction Analysis
3.4.4. Solubility Study of the Binary Products
3.5. Compatibility Studies with Excipients
3.5.1. Thermal Investigations
3.5.2. FTIR Analysis
3.5.3. PXRD Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arun, B.; Narendar, D.; Veerabrahma, K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: Preparation, characterization and comparative pharmacokinetic evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 126–137. [Google Scholar] [CrossRef]
- Rind, L.; Mahmood, T.; Siddiqui, M.H.; Ahsan, F.; Shamim, A.; Anwar, A.; Yadav, R.K. From Hypertension to Beyond: Unraveling the Diverse Mechanisms of Olmesartan in Disease Modulation. Drug Res. 2023, 74, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, D.; Anraku, M.; Tasaki, Y.; Taguchi, K.; Shimoishi, K.; Seo, H.; Hirata, S.; Maruyama, T.; Otagiri, M. Evaluation for antioxidant and renoprotective activity of olmesartan using nephrectomy rats. Biol. Pharm. Bull. 2009, 32, 2041–2045. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Takai, S. Anti-atherosclerotic efficacy of olmesartan. J. Hum. Hypertens. 2002, 16, S7–S12. [Google Scholar] [CrossRef]
- Takiguchi, S.; Ayaori, M.; Uto-Kondo, H.; Iizuka, M.; Sasaki, M.; Komatsu, T.; Takase, B.; Adachi, T.; Ohsuzu, F.; Ikewaki, K. Olmesartan improves endothelial function in hypertensive patients: Link with extracellular superoxide dismutase. Hypertens. Res. 2011, 34, 686–692. [Google Scholar] [CrossRef]
- Saber, S.; Khalil, R.M.; Abdo, W.S.; Nassif, D.; El-Ahwany, E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol. Appl. Pharmacol. 2019, 364, 120–132. [Google Scholar] [CrossRef]
- Hameed, A.M.A.; Altemimi, M.L.; Al-Mudhafar, R.H.; Al-Mudhafar, D.H.; Hadi, N.R.; Al, N.; Al-Ashraf, I. The Anti-Apoptotic, Anti-Inflammatory And Anti-Oxidant Effects Of Olmesartan On Renal I/R Injury In Male Rat Model. Syst. Rev. Pharm. 2021, 12, 411–425. [Google Scholar]
- Wang, J.; Zheng, B.; Yang, S.; Zhou, D.; Wang, J. Olmesartan Prevents Oligomerized Amyloid β (Aβ)-Induced Cellular Senescence in Neuronal Cells. ACS Chem. Neurosci. 2021, 12, 1162–1169. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, W.; Dushkin, A.V.; Su, W. Preparation, characterization, in vitro and in vivo studies of olmesartan medoxomil in a ternary solid dispersion with N -methyl- D -glucamine and hydroxypropyl- β -cyclodextrin. J. Drug Deliv. Sci. Technol. 2020, 56, 101546. [Google Scholar] [CrossRef]
- Prajapati, S.T.; Joshi, H.A.; Patel, C.N. Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement. J. Pharm. 2013, 2013, 728425. [Google Scholar] [CrossRef]
- Al-Majed, A.A.; Bakheit, A.H.H.; Abdel Aziz, H.A.; Al-Jallal, A.A.M. Olmesartan. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 42, pp. 241–286. [Google Scholar] [CrossRef]
- Sarabia-Vallejo, Á.; del Caja, M.M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, F.; Dai, Y.; Zhang, J.; Shi, Y.; Lai, D.; Sriboonvorakul, N.; Hu, J. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef]
- Han, D.; Han, Z.; Liu, L.; Wang, Y.; Xin, S.; Zhang, H.; Yu, Z. Solubility enhancement of myricetin by inclusion complexation with heptakis-o-(2-hydroxypropyl)-β-cyclodextrin: A joint experimental and theoretical study. Int. J. Mol. Sci. 2020, 21, 766. [Google Scholar] [CrossRef]
- Usacheva, T.; Kabirov, D.; Beregova, D.; Gamov, G.; Sharnin, V.; Biondi, M.; Mayol, L.; D’Aria, F.; Giancola, C. Thermodynamics of complex formation between hydroxypropyl-β-cyclodextrin and quercetin in water–ethanol solvents at T = 298.15 K. J. Therm. Anal. Calorim. 2019, 138, 417–424. [Google Scholar] [CrossRef]
- Braga, S.S. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules 2019, 9, 801. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Braga, S.S.; Lysenko, K.; El-Saleh, F.; Paz, F.A.A. Cyclodextrin-Efavirenz Complexes Investigated by Solid State and Solubility Studies. Proceedings 2021, 78, 15. [Google Scholar] [CrossRef]
- Braga, S.S.; El-saleh, F.; Lysenko, K.; Paz, F.A.A. Inclusion Compound of Efavirenz and γ -Cyclodextrin: Solid State Studies and Effect on Solubility. Molecules 2021, 26, 519. [Google Scholar] [CrossRef]
- Vakali, V.; Papadourakis, M.; Georgiou, N.; Zoupanou, N.; Diamantis, D.A.; Javornik, U.; Papakyriakopoulou, P.; Plavec, J.; Valsami, G.; Tzakos, A.G.; et al. Comparative Interaction Studies of Quercetin with 2-Hydroxyl-propyl-β-cyclodextrin and 2,6-Methylated-β-cyclodextrin. Molecules 2022, 27, 5490. [Google Scholar] [CrossRef]
- De Gaetano, F.; Scala, A.; Celesti, C.; Lambertsen Larsen, K.; Genovese, F.; Bongiorno, C.; Leggio, L.; Iraci, N.; Iraci, N.; Mazzaglia, A.; et al. Amphiphilic Cyclodextrin Nanoparticles as Delivery System for Idebenone: A Preformulation Study. Molecules 2023, 28, 3023. [Google Scholar] [CrossRef] [PubMed]
- Tănase, I.M.; Sbârcea, L.; Ledeți, A.; Vlase, G.; Barvinschi, P.; Văruţ, R.M.; Dragomirescu, A.; Axente, C.; Ledeți, I. Physicochemical characterization and molecular modeling study of host–guest systems of aripiprazole and functionalized cyclodextrins. J. Therm. Anal. Calorim. 2020, 141, 1027–1039. [Google Scholar] [CrossRef]
- Boczar, D.; Michalska, K. Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Sahakijpijarn, S.; Moon, C.; Koleng, J.J.; Christensen, D.J.; Williams, R.O. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics 2020, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Wangsawangrung, N.; Choipang, C.; Chaiarwut, S.; Ekabutr, P.; Suwantong, O.; Chuysinuan, P.; Techasakul, S.; Supaphol, P. Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels 2022, 8, 543. [Google Scholar] [CrossRef]
- Lima Nascimento, J.; Coelho, A.G.; Oliveira Barros, Y.S.; Sousa Oliveira, I.; Vieira da Silva, F.; Custódio Viana, A.F.S.; Araújo, B.Q.; dos Santos Rocha, M.; das Chagas Pereira de Andrade, F.; de Oliveira Barbosa, C.; et al. Production and Characterization of a β-Cyclodextrin Inclusion Complex with Platonia insignis Seed Extract as a Proposal for a Gastroprotective System. Appl. Sci. 2023, 13, 58. [Google Scholar] [CrossRef]
- Haimhoffer, Á.; Rusznyák, Á.; Réti-Nagy, K.; Vasvári, G.; Váradi, J.; Vecsernyés, M.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci. Pharm. 2019, 87, 33. [Google Scholar] [CrossRef]
- Du, F.; Pan, T.; Ji, X.; Hu, J.; Ren, T. Study on the preparation of geranyl acetone and β-cyclodextrin inclusion complex and its application in cigarette flavoring. Sci. Rep. 2020, 10, 12375. [Google Scholar] [CrossRef]
- Sbârcea, L.; Tănase, I.M.; Ledeți, A.; Cîrcioban, D.; Vlase, G.; Barvinschi, P.; Miclău, M.; Văruţ, R.M.; Suciu, O.; Ledeți, I. Risperidone/Randomly Methylated β-Cyclodextrin Inclusion Complex-Compatibility Study with Pharmaceutical Excipients. Molecules 2021, 26, 1690. [Google Scholar] [CrossRef]
- Tănase, I.M.; Sbârcea, L.; Ledeţi, A.; Barvinschi, P.; Cîrcioban, D.; Vlase, G.; Văruţ, R.M.; Ledeţi, I. Compatibility studies with pharmaceutical excipients for aripiprazole–heptakis (2,6-di-O-methyl)-β-cyclodextrin supramolecular adduct. J. Therm. Anal. Calorim. 2020, 142, 1963–1976. [Google Scholar] [CrossRef]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yu, P.; Sun, P.; Kang, Y.; Niu, Y.; She, Y.; Zhao, D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr. Polym. 2024, 333, 121977. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, S.L.; Chang, T.R.; You, Y.; Wang, X.D.; Wang, L.W.; Yuan, X.F.; Tan, M.H.; Wang, P.D.; Xu, P.W.; et al. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J. Mol. Liq. 2021, 334, 116070. [Google Scholar] [CrossRef]
- Moulahcene, L.; Skiba, M.; Milon, N.; Fadila, H.; Bounoure, F.; Lahiani-Skiba, M. Removal Efficiency of Insoluble β-Cyclodextrin Polymer from Water–Soluble Carcinogenic Direct Azo Dyes. Polymers 2023, 15, 732. [Google Scholar] [CrossRef]
- Shinde, B.; Patil, D.; Nandre, V.; Gautam, M.; Doshi, P.; Gairola, S. Development and validation of a spectrophotometric method for quantification of residual cyclodextrin (DIMEB; Heptakis) in pertussis antigens. Biologicals 2023, 81, 101663. [Google Scholar] [CrossRef]
- Jadhav, P.; Gokarna, V.; Deshpande, V.; Vavia, P. Bioavailability Enhancement of Olmesartan Medoxomil Using Hot-Melt Extrusion: In-Silico, In-Vitro, and In-Vivo Evaluation. AAPS PharmSciTech 2020, 21, 254. [Google Scholar] [CrossRef]
- Anraku, M.; Tabuchi, R.; Goto, M.; Iohara, D.; Mizukai, Y.; Maezaki, Y.; Michihara, A.; Kadowaki, D.; Otagiri, M.; Hirayama, F. Design and evaluation of an extended-release olmesartan tablet using chitosan/cyclodextrin composites. Pharmaceutics 2019, 11, 82. [Google Scholar] [CrossRef]
- Thakkar, H.; Parmar, M.; Patel, A.; Patel, B.; Chauhan, N. Studies on inclusion complex as potential systems for enhancement of oral bioavailability of olmesartan medoxomil. Chron. Young Sci. 2012, 3, 129. [Google Scholar] [CrossRef]
- Andor, M.; Temereancă, C.; Sbârcea, L.; Ledeți, A.; Man, D.E.; Mornoș, C.; Ridichie, A.; Cîrcioban, D.; Vlase, G.; Barvinschi, P.; et al. Host–Guest Interaction Study of Olmesartan Medoxomil with β-Cyclodextrin Derivatives. Molecules 2024, 29, 2209. [Google Scholar] [CrossRef]
- Ledeți, I.; Romanescu, M.; Cîrcioban, D.; Ledeți, A.; Vlase, G.; Vlase, T.; Suciu, O.; Murariu, M.; Olariu, S.; Matusz, P.; et al. Stability and Compatibility Studies of Levothyroxine Sodium in Solid Binary Systems—Instrumental Screening. Pharmaceutics 2020, 12, 58. [Google Scholar] [CrossRef]
- Ridichie, A.; Ledeţi, A.; Sbârcea, L.; Rusu, G.; Muntean, C.; Cîrcioban, D.; Peter, F.; Ledeţi, I. Preformulation studies of levonorgestrel. J. Therm. Anal. Calorim. 2024. [Google Scholar] [CrossRef]
- Murillo-Fernández, M.A.; Montero-Zeledón, E.; Abdala-Saiz, A.; Vega-Baudrit, J.R.; Araya-Sibaja, A.M. Interaction and Compatibility Studies in the Development of Olmesartan Medoxomil and Hydrochlorothiazide Formulations under a Real Manufacturing Process. Pharmaceutics 2022, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Cristea, M.; Baul, B.; Ledeţi, I.; Ledeţi, A.; Vlase, G.; Vlase, T.; Karolewicz, B.; Ştefănescu, O.; Dragomirescu, A.O.; Mureşan, C.; et al. Preformulation studies for atorvastatin calcium: An instrumental approach. J. Therm. Anal. Calorim. 2019, 138, 2799–2806. [Google Scholar] [CrossRef]
- ICH Q8 EMEA/CHMP, 2009, ICH Topic Q 8 (R2) Pharmaceutical Development, Step 5: Note for Guidance on Pharmaceutical Development. 2017. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use-considerations-ich-guideline-q8-r2-pharmaceutical-development-step-5_en.pdf (accessed on 24 August 2024).
- U.S. Department of Health and Human Services Food and Drug Administration. ICH Q8(R2) Pharmaceutical Development. Work. Qual. Des. Pharm. 2009, 8, 28. [Google Scholar]
- Higuchi, T.K.; Connors, A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–211. [Google Scholar]
- Kou, X.; Zhang, Y.; Su, D.; Wang, H.; Huang, X.; Niu, Y.; Ke, Q.; Xiao, Z.; Meng, Q. Study on host-guest interaction of aroma compounds/γ-cyclodextrin inclusion complexes. Lwt 2023, 178, 114589. [Google Scholar] [CrossRef]
- Protein DATA Bank. Available online: http://www.pdb.org/pdb/home/home.do (accessed on 8 June 2024).
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. {CCP4} Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Yin, H.; Wang, C.; Yue, J.; Deng, Y.; Jiao, S.; Zhao, Y.; Zhou, J.; Cao, T. Optimization and characterization of 1,8-cineole/hydroxypropyl-β-cyclodextrin inclusion complex and study of its release kinetics. Food Hydrocoll. 2021, 110, 106159. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Wang, Q.; Ren, L.; Zhou, J. Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CYTA J. Food 2019, 17, 544–551. [Google Scholar] [CrossRef]
- Gholami, R.; Azizi, K.; Ganjali Koli, M. Unveiling the dynamic and thermodynamic interactions of hydrocortisone with β-cyclodextrin and its methylated derivatives through insights from molecular dynamics simulations. Sci. Rep. 2024, 14, 12495. [Google Scholar] [CrossRef] [PubMed]
- Fenyvesi, É.; Szemán, J.; Csabai, K.; Malanga, M.; Szente, L. Methyl-beta-cyclodextrins: The role of number and types of substituents in solubilizing power. J. Pharm. Sci. 2014, 103, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Detrich, Á.; Dömötör, K.J.; Katona, M.T.; Markovits, I.; Vargáné Láng, J. Polymorphic forms of bisoprolol fumarate: Preparation and characterization. J. Therm. Anal. Calorim. 2019, 135, 3043–3055. [Google Scholar] [CrossRef]
- Brondi, A.M.; Garcia, J.S.; Trevisan, M.G. Development and Validation of a Chromatography Method Using Tandem UV/Charged Aerosol Detector for Simultaneous Determination of Amlodipine Besylate and Olmesartan Medoxomil: Application to Drug-Excipient Compatibility Study. J. Anal. Methods Chem. 2017, 2017, 4878316. [Google Scholar] [CrossRef]
- Segall, A.I. Preformulation: The use of FTIR in compatility studies. J. Innov. Appl. Pharm. Sci. 2019, 4, 1–6. [Google Scholar]
Sample | TG | Δm (%) | Mass Residue (%) | DTG | DSC | |||
---|---|---|---|---|---|---|---|---|
Tonset (°C) | Toffset (°C) | Tonset (°C) | Tpeak (°C) | Tonset (°C) | Tpeak (°C) | |||
OLM/DMβCD KP | 120 | 155 | +0.10 | 27.25 | - | - | 155 | 180; 234 |
165 | 291 | 9.70 | 165 | 183; 234 | ||||
291 | 400 | 62.30 | 291 | 371 | ||||
OLM/DMβCD KP + TA | 170 | 273 | 4.61 | 61.87 | 170 | 231 | 154 | 180; 234 |
273 | 400 | 33.52 | 268 | 339 | ||||
OLM/DMβCD KP + STA | 30 | 128 | 4.98 | 25.28 | 30 | 44 | 35 | 71 |
175 | 255 | 3.38 | 175 | 231 | 155 | 179; 234 | ||
255 | 400 | 66.37 | 255 | 323; 342 | ||||
OLM/DMβCD KP + MgSTR | 70 | 89 | 0.41 | 40.61 | 70 | 81 | 71 | 87 |
89 | 112 | 0.91 | 89 | 98 | 96; 122 | 112; 128 | ||
153 | 240 | 5.27 | 112 | 216 | 153; 183 | 172; 195; 224 | ||
240 | 400 | 52.80 | 240 | 327 | ||||
OLM/DMβCD KP + LA | 106 | 150 | 1.24 | 26.42 | 106 | 133 | 93 | 137 |
164 | 278 | 26.06 | 164 | 251 | 167; 201 | 179; 213; 235 | ||
278 | 311 | 8.96 | 278 | 299 | ||||
311 | 400 | 37.32 | 311 | 353 |
Sample | FTIR Spectral Regions (cm−1) | ||
---|---|---|---|
4000–2700 | 2000–1000 | 1000–650 | |
OLM/DMβCD KP | 3422; 2928; 2835 | 1832; 1707;1474; 1400; 1389; 1364; 1329; 1302; 1225; 1196; 1157; 1136; 1086; 1044; 1003 | 966; 950; 924; 856; 826; 783; 768; 760; 741; 706; 679; 660 |
OLM/DMβCD KP + TA | 3676; 3421; 2928; 2835 | 1832; 1707;1474; 1400; 1389; 1364; 1329; 1302; 1227; 1196; 1157; 1136; 1086; 1043; 1003 | 966; 952; 924; 858; 826; 783; 768; 760; 741; 704; 667 |
OLM/DMβCD KP + STA | 3422; 3377; 2932; 2832 | 1832; 1707; 1474; 1400; 1389; 1362; 1331; 1302; 1225; 1196; 1157; 1136; 1086; 1043; 1003 | 966; 953; 924; 899; 858; 826; 781; 768; 760; 741; 706; 679; 660 |
OLM/DMβCD KP + MgSTR | 3418; 2916; 2849 | 1832; 1707; 1570; 1464; 1402; 1389; 1375; 1364; 1321; 1302; 1227; 1194; 1157; 1136; 1086; 1040; 1003 | 966; 953; 924; 858; 826; 783; 768; 760; 741; 721; 704; 681; 658 |
OLM/DMβCD KP + LA | 3381; 3292; 2930; 2900; 2835 | 1832; 1707;1474; 1400; 1389; 1362; 1331; 1302; 1225; 1198; 1157; 1136; 1115; 1084; 1038; 1018; 1003 | 966; 953; 924; 899; 878; 858; 826; 781; 768; 760; 741; 706; 679; 658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, D.E.; Nițu, E.-T.; Temereancă, C.; Sbârcea, L.; Ledeți, A.; Ivan, D.; Ridichie, A.; Andor, M.; Jîjie, A.-R.; Barvinschi, P.; et al. Host–Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics 2024, 16, 1557. https://doi.org/10.3390/pharmaceutics16121557
Man DE, Nițu E-T, Temereancă C, Sbârcea L, Ledeți A, Ivan D, Ridichie A, Andor M, Jîjie A-R, Barvinschi P, et al. Host–Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics. 2024; 16(12):1557. https://doi.org/10.3390/pharmaceutics16121557
Chicago/Turabian StyleMan, Dana Emilia, Ema-Teodora Nițu, Claudia Temereancă, Laura Sbârcea, Adriana Ledeți, Denisa Ivan, Amalia Ridichie, Minodora Andor, Alex-Robert Jîjie, Paul Barvinschi, and et al. 2024. "Host–Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients" Pharmaceutics 16, no. 12: 1557. https://doi.org/10.3390/pharmaceutics16121557
APA StyleMan, D. E., Nițu, E. -T., Temereancă, C., Sbârcea, L., Ledeți, A., Ivan, D., Ridichie, A., Andor, M., Jîjie, A. -R., Barvinschi, P., Rusu, G., Văruţ, R. -M., & Ledeți, I. (2024). Host–Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics, 16(12), 1557. https://doi.org/10.3390/pharmaceutics16121557