Detection of Kelch13 and Coronin Genes in Colpodella sp. ATCC 50594
<p>Sam-Yellowe’s trichrome staining of formalin-fixed <span class="html-italic">Colpodella</span> sp. ATCC 50594 trophozoites (yellow arrows) attached to <span class="html-italic">P. caudatus</span> (red arrows). Trophozoites with enlarged food vacuoles are shown in panels (<b>A</b>–<b>C</b>). <span class="html-italic">Colpodella</span> pre-cysts no longer attached to prey are shown in panels (<b>A</b>,<b>C</b>,<b>D</b>). (orange arrows). Scale bars: 10 µm.</p> "> Figure 2
<p>Agarose gels (1.5%) of PCR-amplified DNA from <span class="html-italic">Colpodella</span> sp. ATCC 50594 targeting coronin and Kelch 13 (<b>A</b>) and 18S rRNA and Kelch 13 (<b>B</b>). A. Lane 1, 1 kb marker; 2, <span class="html-italic">Colpodella</span> nested coronin; 3, <span class="html-italic">Colpodella</span> nested coronin; 4, <span class="html-italic">P. falciparum</span> (HB3) coronin; 5, <span class="html-italic">P. caudatus</span> coronin; 6, <span class="html-italic">Colpodella</span> Kelch 13 nested ACT; 7, <span class="html-italic">Colpodella</span> Kelch 13 nested propeller; 8, <span class="html-italic">P. falciparum</span> (HB3) Kelch nested ACT; 9, <span class="html-italic">P. caudatus</span> Kelch 13; 10, 100 bp ladder. B. Lane 1, 1 kb marker; 2, <span class="html-italic">P. falciparum</span> nested Kelch 13; 3, <span class="html-italic">P. falciparum</span> direct Kelch 13; 4, <span class="html-italic">Colpodella</span> nested Kelch 13; 5, <span class="html-italic">Colpodella</span> nested Kelch 13; 6, 18S rRNA <span class="html-italic">Colpodella</span>; 7, <span class="html-italic">Colpodella</span> 18S rRNA; 8, 100 bp ladder. Template DNA from two different HB3 and <span class="html-italic">Colpodella</span> DNA extracts were used for PCR.</p> "> Figure 3
<p>18S rRNA gene sequences retrieved following a BLAST search of <span class="html-italic">Colpodella</span> sp. ATCC 50594 18S rRNA sequences from the current study (yellow highlight) were aligned for distance tree analysis to show the relationship between <span class="html-italic">Colpodella</span> sequences identified from different vertebrate hosts and other apicomplexa such as <span class="html-italic">Theileria</span> spp. and <span class="html-italic">Cryptosporidium</span> spp.</p> "> Figure 4
<p>18S rRNA gene sequences retrieved following a BLAST search of <span class="html-italic">Colpodella</span> sp. ATCC 50594 18S rRNA sequences were used to construct a phylogenetic tree to determine the relationship of the genes. Phylogenetic tree analysis was conducted using maximum likelihood using the PhyML (aLRT) program (<a href="https://www.phylogeny.fr/" target="_blank">https://www.phylogeny.fr/</a> (accessed on 30 November 2024) following sequence alignment by MUSCLE. DNA sequence from 18S rRNA from 14 sequences retrieved from the NCBI BLAST search were aligned with the DNA sequence obtained from the current study (Colpodella_18srRNA). Numbers (in red) at the nodes represent posterior probabilities. Branch length scale bar values are shown.</p> "> Figure 5
<p>Coronin gene sequences retrieved from the NCBI database were used to construct a phylogenetic tree to determine the relationship of the genes. Phylogenetic analysis was conducted using maximum likelihood using PhyML (aLRT) program (<a href="https://www.phylogeny.fr/" target="_blank">https://www.phylogeny.fr/</a>) following sequence alignment by MUSCLE. The DNA sequence from coronin genes from 5 sequences retrieved from the NCBI BLAST search were aligned with the <span class="html-italic">Colpodella</span> sp. ATCC 50594 and <span class="html-italic">P. falciparum</span> (HB3) DNA sequences obtained from the current study (<span class="html-italic">Colpodella</span> and HB3). Numbers (in red) at the nodes represent posterior probabilities. Branch length scale bar values are shown.</p> "> Figure 6
<p>DNA sequences from coronin genes retrieved following a BLAST search of <span class="html-italic">Colpodella</span> sp. ATCC 50594 coronin DNA sequences (yellow highlight) were aligned for distance tree analysis to show the relationship between DNA sequences identified from <span class="html-italic">Colpodella</span> sp. ATCC 50594 and coronin genes from <span class="html-italic">Plasmodium falciparum</span>.</p> "> Figure 7
<p>Kelch 13 gene sequences retrieved from the NCBI database were used to construct a phylogenetic tree to determine the relationship of the genes. Phylogenetic analysis was conducted using maximum likelihood using the PhyML (aLRT) program (<a href="https://www.phylogeny.fr/" target="_blank">https://www.phylogeny.fr/</a>) following sequence alignment by MUSCLE. The DNA sequence from Kelch 13 genes from 4 sequences retrieved from the NCBI BLAST search were aligned with the DNA sequences obtained from the current study (HB3 and Colpodella_Kelch13). Numbers (in red) at the nodes represent posterior probabilities. Branch length scale bar values are shown.</p> "> Figure 8
<p>DNA sequences from Kelch 13 genes retrieved following a BLAST search of <span class="html-italic">Colpodella</span> sp. ATCC 50594 Kelch 13 sequences were aligned for distance tree analysis to show the relationship between <span class="html-italic">Colpodella</span> sequences identified from <span class="html-italic">Colpodella</span> sp. ATCC 50594 in the present study (yellow highlight) and Kelch 13 genes from <span class="html-italic">Plasmodium falciparum</span>.</p> "> Figure 9
<p>Confocal and differential interference contrast (DIC) microscopy of 5% formalin-fixed <span class="html-italic">Colpodella</span> sp. ATCC 50594 reacted with Mab K13, clone D9, in IFA. The food vacuole showing cross reactivity with Mab K13, clone D9, is shown in panels (<b>C</b>) and (G). (<b>A</b>–<b>D</b>) <span class="html-italic">Colpodella</span> trophozoite with a large food vacuole (FV) attached to <span class="html-italic">P. caudatus</span> during myzocytosis. The DAPI-stained nucleus (N) and kinetoplast (K) of <span class="html-italic">P. caudatus</span> are shown. The nucleus (n) of <span class="html-italic">Colpodella</span> is also shown. (<b>E</b>–<b>H</b>) A pre-cyst unattached following feeding is shown. The FV in panels (<b>A</b>,<b>B</b>,<b>E</b>,<b>F</b>) show the DAPI-stained aspirated nucleus and kinetoplast aspirated from the prey. (<b>I</b>–<b>L</b>) Normal mouse serum negative control. Panels (<b>A</b>–<b>D</b>), scale bars, 2 µm; E-H, 1 µm; I-L, 2 µm.</p> "> Figure 9 Cont.
<p>Confocal and differential interference contrast (DIC) microscopy of 5% formalin-fixed <span class="html-italic">Colpodella</span> sp. ATCC 50594 reacted with Mab K13, clone D9, in IFA. The food vacuole showing cross reactivity with Mab K13, clone D9, is shown in panels (<b>C</b>) and (G). (<b>A</b>–<b>D</b>) <span class="html-italic">Colpodella</span> trophozoite with a large food vacuole (FV) attached to <span class="html-italic">P. caudatus</span> during myzocytosis. The DAPI-stained nucleus (N) and kinetoplast (K) of <span class="html-italic">P. caudatus</span> are shown. The nucleus (n) of <span class="html-italic">Colpodella</span> is also shown. (<b>E</b>–<b>H</b>) A pre-cyst unattached following feeding is shown. The FV in panels (<b>A</b>,<b>B</b>,<b>E</b>,<b>F</b>) show the DAPI-stained aspirated nucleus and kinetoplast aspirated from the prey. (<b>I</b>–<b>L</b>) Normal mouse serum negative control. Panels (<b>A</b>–<b>D</b>), scale bars, 2 µm; E-H, 1 µm; I-L, 2 µm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diprotist Culture Conditions
2.2. Genomic DNA Isolation
2.3. Polymerase Chain Reaction and DNA Sequencing
2.4. Phylogenetic Tree Analysis
2.5. Immunofluorescence and Confocal Microscopy
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valigurová, A.; Florent, I. Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa. Microorganisms 2021, 9, 1430. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Long, S.; Hide, G.; Lun, Z.-R.; Lai, D.-H. Apicomplexa micropore: History, function, and formation. Trends Parasitol. 2024, 40, 416–426. [Google Scholar] [CrossRef]
- Simpson, A.G.; Patterson, D.J. Ultrastructure and the identification of the predatory flagellate Colpodella pugnax Cienkowski (Apicomplexa) with a description of Colpodella turpis n. sp. and a review of the genus. Syst. Parasitol. 1996, 33, 187–198. [Google Scholar] [CrossRef]
- Brugerolle, G. Colpodella vorax: Ultrastructure, predation, life-cycle, mitosis, and phylogenetic relationships. Eur. J. Protistol. 2002, 38, 113–125. [Google Scholar] [CrossRef]
- Cavalier-Smith, T.; Chao, E.E. Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.). Eur. J. Protistol. 2004, 40, 185–212. [Google Scholar] [CrossRef]
- Salti, M.I.; Sam-Yellowe, T.Y. Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections. Pathogens 2024, 13, 600. [Google Scholar] [CrossRef]
- Yuan, C.L.; Keeling, P.J.; Krause, P.J.; Horak, A.; Bent, S.; Rollend, L.; Hua, X.G. Colpodella spp.–like Parasite Infection in Woman, China. Emerg. Infect. Dis. 2012, 18, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-C.; Sun, X.; Bao, Y.; Fu, W.; Lin, K.; Chen, T.; Zheng, C.; Li, S.; Chen, W.; Huang, C. Molecular identification of Colpodella sp. of South China tiger Panthera tigris amoyensis (Hilzheimer) in the Meihua Mountains, Fujian, China. Folia Parasitol. 2022, 69, 19. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Hu, Y.; Qiu, H.; Wang, J.; Jiang, J. Colpodella sp. (Phylum Apicomplexa) Identified in Horses Shed Light on Its Potential Transmission and Zoonotic Pathogenicity. Front. Microbiol. 2022, 13, 857752. [Google Scholar]
- Chukwu, V.E.; Nnabuife, H.E.; Mkpuma, N.; Ndudim, I.O.; Obeta, S.S.; Jegede, O.C.; Joshua, K.; Opara, N.M. Molecular detection of Colpodella sp. using Cryptosporidium primers in faecal samples of small ruminants in FCT and Plateau State, Nigeria. J. Vet. Biomed. Sci. 2024, 6, 112–122. [Google Scholar] [CrossRef]
- Olmo, J.L.; Esteban, G.F.; Finlay, B.J. New records of the ectoparasitic flagellate Colpodella gonderi on non-Colpoda ciliates. J. Int. Microbiol. 2011, 14, 207–211. [Google Scholar]
- Jiang, J.-F.; Jiang, R.-R.; Chang, Q.-C.; Zheng, Y.-C.; Jiang, B.-G.; Sun, Y.; Jia, N.; Wei, R.; Bo, H.-B.; Huo, Q.-B.; et al. Potential novel tick-borne Colpodella species parasite infection in patient with neurological symptoms. PLoS Negl. Trop. Dis. 2018, 12, e0006546. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Fujioka, H.; Peterson, J.W. Ultrastructure of Myzocytosis and Cyst Formation, and the Role of Actin in Tubular Tether Formation in Colpodella sp. (ATCC 50594). Pathogens 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Getty, T.A.; Peterson, J.W.; Fujioka, H.; Walsh, A.M.; Sam-Yellowe, T.Y. Colpodella sp. (ATCC 50594) Life Cycle: Myzocytosis and Possible Links to the Origin of Intracellular Parasitism. Trop. Med. Infect Dis. 2021, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Asraf, M.M.; Peterson, J.W.; Fujioka, H. Fluorescent Nanoparticle Uptake by Myzocytosis and Endocytosis in Colpodella sp. ATCC 50594. Microorganisms 2023, 11, 1945. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Getty, T.A.; Addepalli, K.; Walsh, A.M.; Williams-Medina, A.R.; Fujioka, H.; Peterson, J.W. Novel life cycle stages of Colpodella sp. (Apicomplexa) identified using Sam-Yellowe’s trichrome stains and confocal and electron microscopy. Int. Microbiol. 2022, 25, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Piro, F.; Focaia, R.; Dou, Z.; Masci, S.; Smith, D.; Di Cristina, M. An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host. Microorganisms 2021, 9, 2592. [Google Scholar] [CrossRef]
- Koreny, L.; Mercado-Saavedra, B.N.; Klinger, C.M.; Barylyuk, K.; Butterworth, S.; Hirst, J.; Rivera-Cuevas, Y.; Zaccai, N.R.; Holzer, V.J.C.; Klingl, A.; et al. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 2023, 14, 2167. [Google Scholar] [CrossRef]
- Matz, J.M. Plasmodium’s bottomless pit: Properties and functions of the malaria parasite’s digestive vacuole. Trends Parasitol. 2022, 38, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, B.; Keroack, C.D.; Duraisingh, M.T. Elucidating Host Cell Uptake by Malaria Parasites. Trends Parasitol. 2019, 35, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.A.; Boonhok, R.; Cabrera, M.; Mbenda, H.G.N.; Wang, M.; Min, H.; Liang, X.; Qin, J.; Zhu, X.; Miao, J.; et al. Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, T.; Gras, S.; Sabitzki, R.; Meissner, M. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol. 2020, 6, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Ajibaye, O.; Olukosi, Y.A.; Oriero, E.C.; Oboh, M.A.; Iwalokun, B.; Nwankwo, I.C.; Nnam, C.F.; Adaramoye, O.V.; Chukwemeka, S.; Okanazu, J.; et al. Detection of novel Plasmodium falciparum coronin gene mutations in a recrudescent ACT-treated patient in South-Western Nigeria. Front. Cell Infect. Microbiol. 2024, 14, 1366563. [Google Scholar] [CrossRef]
- Demas, A.R.; Sharma, A.I.; Wong, W.; Early, A.M.; Redmond, S.; Bopp, S.; Neafsey, D.E.; Volkman, S.K.; Hartl, D.L.; Wirth, D.F. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc. Natl. Acad. Sci. USA 2018, 115, 12799–12804. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.T.; Creed, S.J.; Bear, J.E. Unraveling the enigma: Progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 2011, 21, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Bane, K.S.; Lepper, S.; Kehrer, J.; Sattler, J.M.; Singer, M.; Reinig, M.; Klug, D.; Heiss, K.; Baum, J.; Mueller, A.K. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathog. 2016, 12, e100571. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Yadavalli, R.; Fujioka, H.; Peterson, J.W.; Drazba, J.A. RhopH3, rhoptry gene conserved in the free-living alveolate flagellate Colpodella sp. (Apicomplexa). Eur. J. Protistol. 2019, 71, 125637. [Google Scholar] [CrossRef] [PubMed]
- Jimale, K.A.; Bezzera-Santos, M.A.; Mendoza-Roldan, J.A.; Latrofa, M.S.; Baneth, G.; Otrano, D. Molecular detection of Colpodella sp. and other tick-borne pathogens in ticks of ruminants, Italy. Acta Trop. 2024, 257, 107306. [Google Scholar] [CrossRef] [PubMed]
- de Laurent, Z.R.; Chebon, L.J.; Ingasia, L.A.; Akala, H.M.; Andagalu, B.; Ochola-Oyier, L.I.; Kamau, E. Polymorphisms in the K13 Gene in Plasmodium falciparum from Different Malaria Transmission Areas of Kenya. Am. J. Trop. Med. Hyg. 2018, 98, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Tardieux, I.; Liu, X.; Poupel, O.; Parzy, D.; Dehoux, P.; Langsley, G.A. Plasmodium falciparum novel gene encoding a coronin-like protein which associates with actin filaments. FEBS Lett. 1998, 441, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Mayengue, P.I.; Niama, R.F.; Kouhounina Batsimba, D.; Malonga-Massanga, A.; Louzolo, I.; Loukabou Bongolo, N.C.; Macosso, L.; Ibara Ottia, R.; Kimbassa Ngoma, G.; Dossou-Yovo, L.R.; et al. No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect. Dis. 2018, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Jonscher, E.; Flemming, S.; Schmitt, M.; Sabitzki, R.; Reichard, N.; Birnbaum, J.; Bergmann, B.; Höhn, K.; Spielmann, T. PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites. Cell Host Microbe 2019, 25, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.S.; Counihan, N.A.; McGowan, S.; de Koning-Ward, T.F. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front. Cell Infect. Microbiol. 2022, 11, 829823. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Meng, J.; Yu, F.; Zhou, C.; Yang, B.; Chen, X.; Yang, G.; Sun, Y.; Cao, W.; Jiang, J.; et al. Molecular epidemiological investigation of piroplasms carried by pet cats and dogs in an animal hospital in Guiyang, China. Front. Microbiol. 2023, 14, 1266583. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.; Li, X.; Bukharr, S.M.; Zhou, M.; Ahmad, S.; Amhad, S.; Javid, A.; Guan, C.; Hussain, A.; Ali, W.; et al. Cross-genera amplification and identification of Colpodella sp. with Cryptosporidium primers in fecal samples of zoo felids from northeast China. Braz. J. Biol. 2021, 83, e247181. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, J.; Lu, N.; Qi, X.; Yang, C.; Liu, B.; Lu, Y.; Gu, Y.; Tan, W.; Zhu, C.; et al. Potential novel Colpodella spp. (phylum Apicomplexa) and high prevalence of Colpodella spp. in goat-attached Haemaphysalis longicornis ticks in Shandong province, China. Ticks Tick. Borne Dis. 2024, 15, 102328. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Mahmoud, H.Y.A.H.; Hifumi, T.; Tanaka, T. Discovery of Colpodella spp. in ticks (Hyalomma dromedarii) infesting camels in southern Egypt. Ticks Tick. Borne Dis. 2024, 15, 102352. [Google Scholar] [CrossRef] [PubMed]
- Phetkarl, T.; Fungwithaya, P.; Udompornprasith, S.; Amendt, J.; Sontigun, N. Preliminary study on prevalence of hemoprotozoan parasites harbored by Stomoxys (Diptera: Muscidae) and tabanid flies (Diptera: Tabanidae) in horse farms in Nakhon Si Thammarat province, Southern Thailand. Vet. World 2023, 16, 2128–2134. [Google Scholar] [CrossRef]
- Li, B.; Zhai, J.Q.; Wu, Y.J.; Shan, F.; Zou, J.J.; Hou, F.H.; Que, T.C.; Chen, W. Molecular identification of tick-borne Rickettsia, Anaplasma, Ehrlichia, Babesia, and Colpodella in confiscated Malayan pangolins. PLoS Negl. Trop. Dis. 2024, 18, e0012667. [Google Scholar] [CrossRef] [PubMed]
- Matsimbe, A.M.; Magaia, V.; Sanches, G.S.; Neves, L.; Noormahomed, E.; Antunes, S.; Domingos, A. Molecular detection of pathogens in ticks infesting cattle in Nampula province, Mozambique. Exp. Appl. Acarol. 2017, 73, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, M.A.; Shamoun, J.; Maggi, R.; Breitschwerdt, E.B.; Sommer, S.L.; Cullen, J.M.; Stowe, D.M. Eosinophilic pericardial effusion and pericarditis in a cat. JFMS Open Rep. 2023, 9, 20551169231213498. [Google Scholar] [CrossRef] [PubMed]
- Squarre, D.; Nakamura, Y.; Hayashida, K.; Kawai, N.; Chambaro, H.; Namangala, B.; Sugimoto, C.; Yamagishi, J. Investigation of the piroplasm diversity circulating in wildlife and cattle of the greater Kafue ecosystem, Zambia. Parasit. Vectors 2020, 13, 599. [Google Scholar] [CrossRef] [PubMed]
- Gnädig, N.F.; Stokes, B.H.; Edwards, R.L.; Kalantarov, G.F.; Heimsch, K.C.; Kuderjavy, M.; Crane, A.; Lee, M.C.S.; Straimer, J.; Becker, K.; et al. Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathog. 2020, 16, e1008482. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sam-Yellowe, T.Y.; Roy, A.; Nims, T.; Qaderi, S.; Peterson, J.W. Detection of Kelch13 and Coronin Genes in Colpodella sp. ATCC 50594. Parasitologia 2025, 5, 5. https://doi.org/10.3390/parasitologia5010005
Sam-Yellowe TY, Roy A, Nims T, Qaderi S, Peterson JW. Detection of Kelch13 and Coronin Genes in Colpodella sp. ATCC 50594. Parasitologia. 2025; 5(1):5. https://doi.org/10.3390/parasitologia5010005
Chicago/Turabian StyleSam-Yellowe, Tobili Y., Antara Roy, Trinity Nims, Sona Qaderi, and John W. Peterson. 2025. "Detection of Kelch13 and Coronin Genes in Colpodella sp. ATCC 50594" Parasitologia 5, no. 1: 5. https://doi.org/10.3390/parasitologia5010005
APA StyleSam-Yellowe, T. Y., Roy, A., Nims, T., Qaderi, S., & Peterson, J. W. (2025). Detection of Kelch13 and Coronin Genes in Colpodella sp. ATCC 50594. Parasitologia, 5(1), 5. https://doi.org/10.3390/parasitologia5010005