Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile
<p>Phylogenetic tree of (<b>A</b>) 16S rRNA gene region (1240 nt) and (<b>B</b>) <span class="html-italic">Ssu12p</span> region (724 nt) enclosing phytoplasmas detected in citrus from Chile, highlighted with filled diamonds, and selected ‘<span class="html-italic">Ca</span>. Phytoplasma’ strains. Information on the phytoplasma strains is reported in <a href="#pathogens-11-00048-t001" class="html-table">Table 1</a>. The tree was constructed using the maximum parsimony algorithm. The numbers in the nodes represent starting values based on 500 pseudo-replications for stability estimation and clade support <span class="html-italic">A. laidlawii</span> is used as outgroup strain.</p> "> Figure 2
<p>In silico RFLP profiles of the phytoplasma strains in the 16SrV subgroups. (<b>A</b>) Restriction profiles generated by the <span class="html-italic">Rsa</span>I enzyme. (<b>B</b>) Restriction profiles generated by the <span class="html-italic">Bfa</span>I enzyme. CTC 192 is a citrus sample. MW: molecular marker PhiX174 digested with <span class="html-italic">HaeII</span>I. Fragment size (nt) from top to bottom: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, and 72. Phytoplasmas used for comparison are: 16SrV-A, elm yellows (EY) ‘<span class="html-italic">Ca</span>. P. ulmi ‘(GenBank accession number: AY197655); 16SrV-B, jujube witches’ broom (JWB-G1) ‘<span class="html-italic">Ca</span>. P. ziziphi ‘(GenBank accession number: AB052876); 16SrV-C, “flavescence dorée” (FD-C) (GenBank accession number: X76560); 16SrV-D, “flavescence dorée” (FD-D) (GenBank accession number: AJ548787); 16SrV-E, rubus stunt (RuS) ‘<span class="html-italic">Ca</span>. P. rubi ‘(GenBank accession number: AY197648); 16SrV-G, Korean jujube witches’ broom (GenBank accession number: AB052879).</p> "> Figure 3
<p>In silico RFLP profiles of phytoplasmas in the subgroups of 16SrXIII ribosomal group. (<b>A</b>) Restriction profiles generated by the <span class="html-italic">Kpn</span>I enzyme. (<b>B</b>) Restriction profiles generated by the <span class="html-italic">Rsa</span>I enzyme. CTC 192 citrus sample. MW: molecular marker PhiX174 digested with <span class="html-italic">Hae</span>III. Fragment size (nt) from top to bottom: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, and 72. Phytoplasmas used for comparison: 16SrXIII-A, Mexican periwinkle virescence (MPV) ‘<span class="html-italic">Ca</span>. P. hispanicum’ (GenBank accession number: AF248960); 16SrXIII-B, strawberry green petal (STRAWB2) (GenBank accession number: U96616); 16SrXIII-C, Chinaberry yellows (CBY1) (GenBank accession number: AF495882); 16SrXIII-D, Mexican potato purple top (SINPV) (GenBank accession number: FJ914647); 16SrXIII-E, papaya apical curl necrosis (PACN) (GenBank accession number: EU719111); 16SrXIII-F strawberry red leaf (GenBank accession number: KJ921641); 16SrXIII-G, Chinaberry yellowing (ChTY) ‘<span class="html-italic">Ca</span>. P. meliae ‘(GenBank accession number: KU850940); 16SrXIII-H broccoli stunt phytoplasma (GenBank accession number: JX626329); 16SrXIII-I Mexican periwinkle virescence phytoplasma (GenBank accession number: KT444664).</p> "> Figure 4
<p>Symptoms of leaf yellowing in the citrus samples resulted positive for 16SrV-A phytoplasmas. (<b>A</b>) Orange CTC 192. (<b>B</b>) Lemon CTC 199. (<b>C</b>) Mandarin CTC 200. (<b>D</b>) Orange CTC 202.</p> "> Figure 5
<p>Symptoms in citrus associated with the 16SrXIII-F phytoplasma presence. (<b>A</b>) CTC 170, orange plant with generalized yellowing and untimely flowering. (<b>B</b>) CTC 134, mandarin plant with threadlike leaves and witches’ broom.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bové, J.-M. “Huanglongbing”: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Cevallos-Cevallos, J.M.; Futch, D.B.; Shilts, T.; Folimonova, S.Y.; Reyes-De-Corcuera, J.I. GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus “huanglongbing”. Plant Physiol. Biochem. 2012, 53, 69–76. [Google Scholar] [CrossRef]
- FAO para América Latina y el Caribe. Available online: https://www.fao.org/americas/prioridades/hlb/es/ (accessed on 16 November 2021).
- Cardinali, M.C.D.B.; Boas, P.R.V.; Milori, D.M.B.P.; Ferreira, E.J.; e Silva, M.F.; Machado, M.A.; Bellete, B.S.; Silva, M.F.D.G.F.D. Infrared spectroscopy: A potential tool in “huanglongbing” and citrus variegated chlorosis diagnosis. Talanta 2012, 91, 1–6. [Google Scholar] [CrossRef]
- Teixeira, D.D.C.; Danet, J.-L.; Eveillard, S.; Martins, E.C.; Junior, W.C.D.J.; Yamamoto, P.T.; Lopes, S.A.; Bassanezi, R.B.; Ayres, A.J.; Saillard, C.; et al. Citrus “huanglongbing” in São Paulo State, Brazil: PCR detection of the ‘Candidatus Liberibacter’ species associated with the disease. Mol. Cell. Probes 2005, 19, 173–179. [Google Scholar] [CrossRef]
- Texeira, D.C.; Ayres, J.; Kitajima, E.W.; Danet, L.; Jagoueix-Eveillard, S.; Saillard, C.; Bové, J.-M. First report of a “huanglongbing”-like disease of citrus in Sao Paulo State, Brazil and association of a new liberibacter species, ‘Candidatus Liberibacter americanus’, with the disease. Plant Dis. 2005, 89, 107. [Google Scholar] [CrossRef]
- EPPO Global Database. Available online: https://gd.eppo.int/taxon/LIBEAS/distribution/PY (accessed on 15 November 2021).
- Badaracco, A.; Redes, F.J.; Preussler, C.A.; Agostini, J.P. Citrus “huanglongbing” in Argentina: Detection and phylogenetic studies of ‘Candidatus Liberibacter asiaticus’. Australas. Plant Pathol. 2017, 46, 171–175. [Google Scholar] [CrossRef]
- Araque, W.; Arévalo, E. Potencial distribución espacial del vector del HLB de los cítricos Diaphorina citri (Hemiptera: Liviidae) en el departamento del Tolima, Colombia. Rev. Colomb. Cienc. Hortíc. 2018, 12, 545–560. [Google Scholar] [CrossRef]
- INIA Uruguay. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/1427/1/111219240807151515.pdf (accessed on 13 November 2021).
- Cornejo, J.; Chica, E. First record of Diaphorina citri (Hemiptera: Psyllidae) in Ecuador infesting urban citrus and orange jasmine trees. J. Insect Sci. 2014, 14, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, O.; Valera, N.; Vásquez, C. Registro y ciclo de vida de Diaphorina citri Kuwayama (Hemiptera: Psyllidae) en tres hospederos en el estado Lara, Venezuela. Entomotróp. Rev. Int. Estud. Entomol. 2007, 22, 145–152. [Google Scholar]
- Comité de cítricos de Chile. Available online: https://comitedecitricos.cl/en/international-news/568-2014-10-07-18-09-05 (accessed on 15 November 2021).
- Chen, J.; Pu, X.; Deng, X.; Liu, S.; Li, H.; Civerolo, E. A phytoplasma related to ‘Candidatus Phytoplasma asteris’ detected in citrus showing “huanglongbing” (yellow shoot disease) symptoms in Guangdong, P.R. China. Phytopathology 2009, 99, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Arratia-Castro, A.A.; Santos-Cervantes, M.E.; Fernández-Herrera, E.; Chávez-Medina, J.A.; Flores-Zamora, G.L.; Camacho-Beltrán, E.; Méndez-Lozano, J.; Leyva-López, N.E. Occurrence of ‘Candidatus Phytoplasma asteris’ in citrus showing “huanglongbing” symptoms in Mexico. Crop. Prot. 2014, 62, 144–151. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Motghare, M.; Kokane, A.; Kokane, S.; Warghane, A.; Bhose, S.; Surwase, D.; Ladaniya, M.S. First report of a ‘Candidatus Phytoplasma cynodontis’-related strain (group 16SrXIV) associated with “huanglongbing” disease on Citrus grandis. Australas. Plant Dis. Notes 2019, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Wulff, N.A.A.; Fassini, C.G.; Marques, V.V.; Martins, E.; Coletti, D.A.B.; Teixeira, D.D.C.; Sanches, M.M.; Bové, J.-M. Molecular characterization and detection of 16SrIII group phytoplasma associated with “huanglongbing” symptoms. Phytopathology 2019, 109, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, D.E.; Lee, I.-M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 1996, 35, 144–151. [Google Scholar]
- Cui, W.; Zamorano, A.; Quiroga, N.; Bertaccini, A.; Fiore, N. Ribosomal protein coding genes SSU12p and LSU36p as molecular markers for phytoplasma detection and differentiation. Phytopathol. Mediterr. 2021, 60, 281–292. [Google Scholar] [CrossRef]
- Sinclair, W.A.; Townsend, A.M.; Griffiths, H.M.; Whitlow, T.H. Responses of six Eurasian Ulmus cultivars to a North American elm yellows phytoplasma. Plant Dis. 2000, 84, 1266–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.; Quiroga, N.; Curkovic, S.T.; Zamorano, A.; Fiore, N. Detection and identification of 16SrXIII-F and a novel 16SrXIII phytoplasma subgroups associated with strawberry phyllody in Chile. Eur. J. Plant Pathol. 2019, 155, 1039–1046. [Google Scholar] [CrossRef]
- Torres, F.; SAG, Servicio Agrícola y Ganadero, Santiago, Chile. Personal communication, 2020.
- Lou, B.; Bai, X.; Bai, Y.; Deng, C.; RoyChowdhury, M.; Chen, C.; Song, Y. Detection and molecular characterization of a 16SrII-A* phytoplasma in grapefruit (Citrus paradisi) with “huanglongbing”-like symptoms in China. J. Phytopathol. 2013, 162, 387–395. [Google Scholar] [CrossRef]
- Luis-Pantoja, M.; Paredes-Tomás, C.; Uneau, Y.; Myrie, W.; Morillon, R.; Satta, E.; Contaldo, N.; Pacini, F.; Bertaccini, A. Identification of ‘Candidatus Phytoplasma’ species in “huanglongbing” infected citrus orchards in the Caribbean. Eur. J. Plant Pathol. 2021, 160, 185–198. [Google Scholar] [CrossRef]
- Das, A.; Nerkar, S.; Thakre, N.; Kumar, A. First report of ‘Candidatus Phytoplasma trifolii’ (16SrVI group) in Nagpur mandarin (Citrus reticulata) showing “huanglongbing” symptoms in central India. New Dis. Rep. 2016, 34, 15. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghaithi, A.G.; Al-Sadi, A.M.; Al-Hammadi, M.S.; Al-Shariqi, R.M.; Al-Yahyai, R.A.; Al-Mahmooli, I.H.; Carvalho, C.M.; Elliot, S.L.; Hogenhout, S.A. Expression of phytoplasma-induced witches’ broom disease symptoms in acid lime (Citrus aurantifolia) trees is affected by climatic conditions. Plant Pathol. 2017, 66, 1380–1388. [Google Scholar] [CrossRef]
- Zreik, L.; Carle, P.; Bové, J.-M.; Garnier, M. Characterization of the mycoplasmalike organism associated with witches’-broom disease of lime and proposition of a ‘Candidatus’ taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. Int. J. Syst. Bacteriol. 1995, 45, 449–453. [Google Scholar] [CrossRef]
- Teixeira, D.; Wulff, N.A.; Martins, E.; Kitajima, E.W.; Bassanezi, R.; Ayres, A.J.; Eveillard, S.; Saillard, C.; Bové, J.M. A phytoplasma closely related to the pigeon pea witches’-broom phytoplasma (16Sr IX) is associated with citrus “huanglongbing” symptoms in the State of São Paulo, Brazil. Phytopathology 2008, 98, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.I.; Schneider, B.; Gibb, K.S. Detection and differentiation of phytoplasmas in Australia. Aust. J. Agric. Res. 1997, 48, 535–544. [Google Scholar] [CrossRef]
- Silva, F.N.; Queiroz, R.B.; de Souza, A.N.; Al-Sadi, A.; Siqueira, D.L.; Elliot, S.L.; Carvalho, C.M. First report of a 16SrII-C phytoplasma associated with asymptomatic acid lime (Citrus aurantifolia) in Brazil. Plant Dis. 2014, 98, 1577. [Google Scholar] [CrossRef]
- Faghihi, M.; Bagheri, A.; Seyahooei, M.A.; Pezhman, A.; Faraji, G. First report of a ‘Candidatus Phytoplasma aurantifolia’-related strain associated with witches’ broom disease of limequat in Iran. New Dis. Rep. 2017, 35, 24. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, J.D.; Rivera-Vargas, L.I.; Segarra, A.E.; Davis, R.E. Detection and molecular characterisation of a group 16SrIX phytoplasma infecting citrus (Citrus sinensis and C. limon), coffee (Coffea arabica), periwinkle (Catharanthus roseus), and tabebuia (Tabebuia heterophylla) in Puerto Rico. Australas. Plant Dis. Notes 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Bhose, S.; Sharma, P.; Warghane, A.; Motghare, M.; Ladaniya, M.S.; Reddy, M.K.; Thorat, V.; Yadav, A. First report of a 16SrXIV group phytoplasma associated with witches’-broom disease of acid lime (Citrus aurantifolia) in India. Plant Dis. 2017, 101, 831. [Google Scholar] [CrossRef]
- Fiore, N.; Zamorano, A.; Pino, A.M.; Maria, F.N.Z.A.P.A. Identification of phytoplasmas belonging to the ribosomal groups 16SrIII and 16SrV in Chilean grapevines. Phytopathogenic Mollicutes 2015, 5, 32. [Google Scholar] [CrossRef]
- Arismendi, N.L.; Riegel, R.; Carrillo, R. In vivo transmission of ‘Candidatus Phytoplasma ulmi’ by Amplicephalus curtulus (Hemiptera: Cicadellidae) and its effect on ryegrass (Lolium multiflorum cv. tama). J. Econ. Èntomol. 2014, 107, 83–91. [Google Scholar] [CrossRef]
- Quiroga, N.; Cabera, M.; Valdera, M.; Rodríguez, E.; Coronado, R.; Zamorano, A.; Fiore, N. Molecular characterization of a phytoplasma associated to phyllody and witches’ broom in strawberry (Fragaria x ananasa). In Proceedings of the XXIV Congreso de la Sociedad Chilena de Fitopatología, Viña del mar, Chile, 1–3 December 2015. 13p. [Google Scholar]
- Cui, W.; Quiroga, N.; Bertaccini, A.; Zamorano, A.; Fiore, N. Use of 12p and 36p genes as molecular markers in support of subgroup identification of two 16SrXIII phytoplasmas associated with strawberry phyllody in Chile. Phytopathogenic Mollicutes 2019, 9, 89. [Google Scholar] [CrossRef]
- Varas, B.; Castro, M.H.; Rodríguez, R.; Von Baer, D.; Mardones, C.; Hinrichsen, P. Identification and characterization of microsatellites from calafate (Berberis microphylla, Berberidaceae)1. Appl. Plant Sci. 2013, 1, 1200003. [Google Scholar] [CrossRef] [PubMed]
- Madariaga, M.; Ramírez, I. Identification of a phytoplasma associated with witches’ broom symptoms in calafate (Berberis microphylla G. Forst.). Chil. J. Agric. Res. 2019, 79, 493–498. [Google Scholar] [CrossRef]
- Santos-Cervantes, M.E.; Chávez-Medina, J.A.; Acosta-Pardini, J.; Flores-Zamora, G.L.; Méndez-Lozano, J.; Leyva-López, N.E. Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis. 2010, 94, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckstein, B.; Barbosa, J.C.; Kreyci, P.F.; Canale, M.C.; Brunelli, K.R.; Bedendo, I.P. Broccoli stunt, a new disease in broccoli plants associated with three distinct phytoplasma groups in Brazil. J. Phytopathol. 2013, 161, 442–444. [Google Scholar] [CrossRef]
- Melo, L.; Silva, E.; Flôres, D.; Ventura, J.; Costa, H.; Bedendo, I. A phytoplasma representative of a new subgroup, 16SrXIII-E, associated with papaya apical curl necrosis. Eur. J. Plant Pathol. 2013, 137, 445–450. [Google Scholar] [CrossRef]
- Fernández, F.D.; Meneguzzi, N.G.; Guzmán, F.A.; Kirschbaum, D.S.; Conci, V.C.; Nome, C.F.; Conci, L.R. Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. Int. J. Syst. Evol. Microbiol. 2015, 65, 2741–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broadbent, P.; Fraser, L.R.; McGechan, J. Australian citrus dieback. In Proceedings of the Seventh International Organization of Citrus Virologists Conference, Athens, Greece, 29 September–4 October 1975. [Google Scholar] [CrossRef]
- Timer, L.W.; Garney, S.M.; Graham, J.H. PART I: Infectious (biotic) diseases. In Compendium of Citrus Diseases, 2nd ed.; The American Phytopathological Society: St. Paul, MN, USA, 2000; pp. 5–69. [Google Scholar] [CrossRef]
- Quiroga, N.; Longone, V.; González, X.; Zamorano, A.; Pino, A.M.; Picciau, L.; Alma, A.; Paltrinieri, S.; Contaldo, N.; Bertaccini, A.; et al. Transmission of 16SrIII-J phytoplasmas by the leafhoppers Paratanus exitiousus and Bergallia valdiviana. Phytopathol. Mediterr. 2019, 58, 231–237. [Google Scholar] [CrossRef]
- Quiroga, N.; Soto, D.; Farah, P.; Pino, A.M.; Zamorano, A.; Alma, A.; Picciau, L.; Fiore, N. New contribution about the epidemiology of grapevine yellows associated phytoplasmas in Chile. Phytopathogenic Mollicutes 2019, 9, 189. [Google Scholar] [CrossRef]
- Quiroga, N.; Gamboa, C.; Soto, D.; Pino, A.M.; Zamorano, A.; Campodonico, J.; Alma, A.; Bertaccini, A.; Fiore, N. Update and new epidemiological aspects about grapevine yellows in Chile. Pathogens 2020, 9, 933. [Google Scholar] [CrossRef]
- Quiroga, N.; Ivulic, D.; Lagos, J.; Saavedra, M.; Sandoval-Rodríguez, A.; Infante, R.; Morales, L.; Fiore, N. Risk analysis of the establishment of Scaphoideus titanus, vector of “flavescence dorée” phytoplasma in grapevine, under current and estimated climate change conditions in Chile. Phytopathogenic Mollicutes 2017, 7, 39. [Google Scholar] [CrossRef]
- Gottwald, T.R. Current epidemiological understanding of citrus “huanglongbing”. Annu. Rev. Phytopathol. 2010, 48, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Angelini, E.; Clair, D.; Borgo, M.; Bertaccini, A.; Boudon-Padieu, E. “Flavescence dorée” in France and Italy—Occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 2001, 40, 79–86. [Google Scholar] [CrossRef]
- Fujikawa, T.; Miyata, S.-I.; Iwanami, T. Convenient detection of the citrus greening (“huanglongbing”) bacterium ‘Candidatus Liberibacter asiaticus’ by direct PCR from the midrib extract. PLoS ONE 2013, 8, e57011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafarullah, A.; Saleem, F. Detection and molecular characterization of ‘Candidatus Liberibacter spp´. causing “huanglongbing” (HLB) in indigenous citrus cultivars in Pakistan. Pak. J. Bot. 2016, 48, 2071–2076. [Google Scholar]
- Hocquellet, A.; Toorawa, P.; Bové, J.-M.; Garnier, M. Detection and identification of the two ‘Candidatus Liberobacter’ species associated with citrus “huanglongbing” by PCR amplification of ribosomal protein genes of the β operon. Mol. Cell. Probes 1999, 13, 373–379. [Google Scholar] [CrossRef]
- Jagoueix, S.; Bové, J.-M.; Garnier, M. PCR detection of the two ‘Candidatus Liberobacter’ species associated with greening disease of citrus. Mol. Cell. Probes 1996, 10, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, W.; Lee, I.-M.; Shao, J.; Suo, X.; Davis, R.E. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 2009, 59, 2582–2593. [Google Scholar] [CrossRef]
16Sr Group | Subgroup | Associated Disease (‘Ca. Phytoplasma’ Species) | Acronym | GenBank Accession Number | |
---|---|---|---|---|---|
SSU12p | 16S rRNA | ||||
16SrI | A | Aster yellows witches’ broom | AYWB | CP000061 | |
B | Onion yellows mild strain | OY-M | NC_005303 | ||
B | Primrose virescence | PRIVA | MT161512 | AY265210 | |
C | Clover phyllody | KVE | MT161514 | AY265217 | |
F | Aster yellows from apricot | A-AY | MT161515 | AY265211 | |
16SrII | A | Peanut witches’ broom | PnWB | AMWZ00000000 | |
A | Echinacea purpurea witches’ broom | E. purpurea WB | LKAC00000000 | ||
C | Faba bean phyllody | FBP | MT161516 | EF193354 | |
D | Tomato big bud | TBB | MT161517 | EF193359 | |
16SrIII | A | Peach × disease (‘Ca. P. pruni’) | CX | LHCF00000000 | |
B | Italian clover phyllody | ItClPh | AKIM00000000 | ||
D | Goldenrod yellows | GR | MT161522 | FJ376627 | |
H | Poinsettia branch inducing | PoiBI | AKIK00000000 | ||
J | Phytoplasma Vc33 | Vc33 | LLKK00000000 | ||
16SrV | A | Elm yellows (‘Ca. P. ulmi’) | EY | MT161527 | AY197655 |
16SrVI | A | Clover proliferation | CP1 | MT161528 | HQ589189 |
16SrVII | A | Ash yellows (‘Ca. P. fraxini’) | ASHY | MT161529 | HQ589190 |
16SrIX | B | Almond witches’ broom (‘Ca. P. phoenicium’) | SA213 | JPSQ00000000 | |
C | Picris echioides yellows | PEY | MT161530 | JQ868441 | |
16SrX | A | Apple proliferation (‘Ca. P. mali’) | AT | CU469464 | |
B | European stone fruit yellows (‘Ca. P. prunorum’) | ESFY | MT161533 | AM933142 | |
C | Pear decline (‘Ca. P. pyri’) | PD | MT161535 | AJ542543 | |
16SrXII | A | “stolbur” (‘Ca. P. solani’) | STOL SA-1 | MPBG00000000 | |
B | Austral. grapev. yellows (‘Ca. P. australiense’) | AUSGY | AM422018 | ||
C | Strawberry lethal yellows | CPA | CP002548 | ||
16SrXIII | F | Fragaria × ananassa phyllody | StrPh-CL1 | MT161538 | MH939191 |
K | Fragaria × ananassa phyllody | StrPh-CL2 | MT161539 | MH939192 | |
K | Fragaria × ananassa phyllody | StrPh-CL4 | MT161541 | MH939194 | |
16SrV | A | Citrus × sinensis Lane late yellows | CTC192 | OL690419 | OL677628 |
16SrXIII | F | Citrus × sinensis Fukumoto witches’ broom | CTC170 | OL690418 | OL672243 |
Sample | Species and Variety | Region and Locality | Phytoplasma Detected (Ribosomal Subgroup) |
---|---|---|---|
CTC 182 | Citrus reticulata Murcott | Metropolitana (Pomaire) | 16SrV-A |
CTC 184 | Citrus reticulata Murcott | Metropolitana (Pomaire) | 16SrV-A |
CTC 188 | Citrus reticulata Murcott | Metropolitana (Pomaire) | 16SrV-A |
CTC 190 | Citrus × limon Fino 49 | Metropolitana (Pomaire) | 16SrV-A |
CTC 192 | Citrus × sinensis Lane late | Metropolitana (Pomaire) | 16SrV-A |
CTC 193 | Citrus × sinensis Lane late | Metropolitana (Pomaire) | 16SrV-A |
CTC 199 | Citrus × limon Eureka | Metropolitana (Mallarauco) | 16SrV-A |
CTC 200 | Citrus reticulata Murcott | Metropolitana (Mallarauco) | 16SrV-A |
CTC 202 | Citrus × sinensis Valencia | Metropolitana (Mallarauco) | 16SrV-A |
CTC 203 | Citrus × limon Eureka | Metropolitana (Mallarauco) | 16SrV-A |
CTC 207 | Citrus reticulata Murcott | Metropolitana (Mallarauco) | 16SrV-A |
CTC 212 | Citrus reticulata Murcott | Metropolitana (Mallarauco) | 16SrV-A |
CTC 134 | Citrus reticulata Orri | L. B. O’Higgins (Peumo) | 16SrXIII-F |
CTC 170 | Citrus × sinensis Fukumoto | L. B. O’Higgins (Pichidegua) | 16SrXIII-F |
Region | Number of Samples |
---|---|
Tarapacá | 10 |
Coquimbo | 60 |
Valparaíso | 55 |
Metropolitana | 62 |
Libertador Bernardo O’Higgins | 49 |
Maule | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroga, N.; Gamboa, C.; Medina, G.; Contaldo, N.; Torres, F.; Bertaccini, A.; Zamorano, A.; Fiore, N. Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile. Pathogens 2022, 11, 48. https://doi.org/10.3390/pathogens11010048
Quiroga N, Gamboa C, Medina G, Contaldo N, Torres F, Bertaccini A, Zamorano A, Fiore N. Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile. Pathogens. 2022; 11(1):48. https://doi.org/10.3390/pathogens11010048
Chicago/Turabian StyleQuiroga, Nicolas, Camila Gamboa, Gabriela Medina, Nicoletta Contaldo, Fernando Torres, Assunta Bertaccini, Alan Zamorano, and Nicola Fiore. 2022. "Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile" Pathogens 11, no. 1: 48. https://doi.org/10.3390/pathogens11010048
APA StyleQuiroga, N., Gamboa, C., Medina, G., Contaldo, N., Torres, F., Bertaccini, A., Zamorano, A., & Fiore, N. (2022). Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile. Pathogens, 11(1), 48. https://doi.org/10.3390/pathogens11010048