Modifying Bitumen with Recycled PET Plastics to Enhance Its Water Resistance and Strength Characteristics
<p>The microstructure of the surface of a sample of the modified bituminous mixture (10× magnification): (<b>a</b>) 1% modifier; (<b>b</b>) 3% modifier; (<b>c</b>) 5% modifier; and (<b>d</b>) 8% modifier.</p> "> Figure 2
<p>Results of X-ray structural analysis of samples of modified bituminous mixtures with different contents of PET additive: 1% (<b>a</b>); 3% (<b>b</b>); 5% (<b>c</b>); and 10% (<b>d</b>).</p> "> Figure 3
<p>Dependence of moisture mass increase rate in sample over time for a—1% modifier in bituminous mixture; b—5% modifier in bituminous mixture; c—12% modifier in bituminous mixture.</p> "> Figure 4
<p>Thermograms of the physical and phase states of the PET modifier in bituminous mixture samples: a—modified bituminous mixture sample with 10% PET; b—PET modifier sample; c—bitumen sample.</p> "> Figure 5
<p>The stress intensity factor as a function of loading cycles in fatigue tests by three-point bending for modified bituminous mixtures with the following contents: (a) 1% modifier of bituminous mixture; (b) 3% modifier of bituminous mixture; and (c) 5% modifier of bituminous mixture.</p> ">
Abstract
:1. Introduction
1.1. Literature Review
1.2. Problem Statement
- −
- Conduct a comparative analysis of modified bituminous mixture samples based on their physical and mechanical properties.
- −
- Obtain the surface microstructures of modified bituminous mixture samples with varying modifier contents.
- −
- Perform an X-ray structural analysis of modified bituminous mixture samples with different contents of PET additive.
- −
- Determine the relationship between the moisture absorption rate and time for modified bituminous mixture samples with varying modifier contents.
- −
- Identify the values of stress intensity factors as a function of the number of loading cycles during fatigue testing using three-point bending for modified bituminous mixture samples with different modifier contents.
2. Methods and Materials
- −
- Temperature: 180 °C;
- −
- Mixing time: 45 min;
- −
- Mixing speed: 2000 rpm.
3. Results
- A glass transition onset at 77 °C;
- A crystallization onset at 160 °C;
- Melting within the range of 205–265 °C.
4. Discussion
5. Conclusions
- −
- An examination of the effects of low temperatures on the operational properties of various bituminous mixtures;
- −
- An analysis of the impact of modifiers derived from different plastics on the water resistance and strength characteristics of bituminous mixtures to identify the optimal type of modifier;
- −
- An investigation of the swelling effect of particles after the moisture saturation of bituminous mixtures (including the microstructure control of the samples before and after moisture saturation) and its influence on strength characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible packaging from fruit processing waste: A comprehensive review. Food Rev. Int. 2023, 39, 2075–2106. [Google Scholar] [CrossRef]
- Gulyaev, A.I.; Erasov, V.S.; Oreshko, E.I.; Utkin, D.A. Analyzing the destruction of a carbon-fiber-reinforced polymer during the pushout of a multifilamentary cylinder. Polym. Sci. Ser. D 2022, 15, 574–580. [Google Scholar] [CrossRef]
- Oliani, W.L.; Pusceddu, F.H.; Parra, D.F. Silver-titanium polymeric nanocomposite non ecotoxic with bactericide activity. Polym. Bull. 2022, 79, 10949–10968. [Google Scholar] [CrossRef]
- Hakuzimana, J. Break free from plastics: Environmental perspectives and evidence from Rwanda. Environ. Ecosyst. Sci. 2021, 5, 27–36. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, Q.; Song, Q.; Li, J. An analysis of the plastic waste trade and management in Asia. Waste Manag. 2021, 119, 242–253. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-based biodegradable packaging materials: A review of their preparation characterization and diverse applications in the food industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Tian, X.; Han, S.; Wang, K.; Shan, T.; Li, Z.; Li, S.; Wang, C. Waste resource utilization: Spent FCC catalyst-based composite catalyst for waste tire pyrolysis. Fuel 2022, 328, 125236. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Karim, M.R.; Soltani, M. Utilization of waste plastic bottles in asphalt mixture. J. Eng. Sci. Technol. 2013, 8, 264–271. [Google Scholar]
- Abuaddous, M.; Taamneh, M.M.; Rabab’Ah, S.R. The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. Int. J. Pavement Res. Technol. 2021, 14, 579–587. [Google Scholar] [CrossRef]
- Xu, X.; Chen, G.; Wu, Q.; Leng, Z.; Chen, X.; Zhai, Y.; Tu, Y.; Peng, C. Chemical upcycling of waste PET into sustainable asphalt pavement containing recycled concrete aggregates: Insight into moisture-induced damage. Constr. Build. Mater. 2022, 360, 129632. [Google Scholar] [CrossRef]
- Qaidi, S.; Al-Kamaki, Y.; Hakeem, I.; Dulaimi, A.F.; Özkılıç, Y.; Sabri, M.; Sergeev, V. Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates. Front. Mater. 2023, 10, 1101146. [Google Scholar] [CrossRef]
- Jiang, X.; Titi, H.; Ma, Y.; Polaczyk, P.; Zhang, M.; Gabrielson, J.; Bai, Y.; Huang, B. Evaluating the performance of inverted pavement structure using the accelerated pavement test (APT). Constr. Build. Mater. 2022, 346, 128489. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, X.; Tan, Z.; Yin, B.; Leng, Z.; Zhong, J. Enhancing sustainability in pavement Engineering: A-state-of-the-art review of cement asphalt emulsion mixtures. Clean. Mater. 2023, 9, 100204. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Boom, Y.J.; Giustozzi, F. Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers 2021, 13, 3242. [Google Scholar] [CrossRef]
- Jiang, X.; Gabrielson, J.; Huang, B.; Bai, Y.; Polaczyk, P.; Zhang, M.; Hu, W.; Xiao, R. Evaluation of inverted pavement by structural condition indicators from falling weight deflectometer. Constr. Build. Mater. 2022, 319, 125991. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test. Mater. Des. 2014, 53, 317–324. [Google Scholar] [CrossRef]
- Islam, M.M.; Shirin, M.S.; Tonoy, T.R.; Sweet, S.A. Modification of bitumen properties using waste polymer in context of Bangladesh. Int. J. Min. Proc. Extr. Met. 2021, 6, 6–11. [Google Scholar] [CrossRef]
- Chen, Z.; Leng, Z.; Jiao, Y.; Xu, F.; Lin, J.; Wang, H.; Cai, J.; Zhu, L.; Zhang, Y.; Feng, N.; et al. Innovative use of industrially produced steel slag powders in asphalt mixture to replace mineral fillers. J. Clean. Prod. 2022, 344, 131124. [Google Scholar] [CrossRef]
- Daly, W.H.; Collier, J.R.; Negulescu, I.I.; Qiu, Z.; Runkle, J. Determination of Significant Factors Controlling Compatibility of Asphalts with Synthetic Polymers. Technical Report. 1995. Available online: https://rosap.ntl.bts.gov/view/dot/22244 (accessed on 12 July 2024).
- Moghaddam, T.B.; Karim, M.R.; Syammaun, T. Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Const. Build. Mater. 2012, 34, 236–242. [Google Scholar] [CrossRef]
- McNally, T. Polymer Modified Bitumen: Properties and Characterisation; Woodhead Publishing: Oxford, UK, 2011. [Google Scholar]
- Makarov, D.; Ayupov, D.; Murafa, A.; Khozin, V. Compatibility studies of mixed thermoplastic rubber with road bitumen. Open. Civ. Eng. J. 2014, 8, 124–129. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Sun, L.; Zhang, H.; Harvey, J.; Yang, J.; Yang, B.; Zuo, X. Laboratory investigation on rheological, chemical and morphological evolution of high content polymer modified bitumen under long-term thermal oxidative aging. Const. Build. Mater. 2021, 303, 124565. [Google Scholar] [CrossRef]
- Plewa, A.; Belyaev, P.S.; Andrianov, K.A.; Zubkov, A.F.; Frolov, V.A. The effect of modifying additives on the consistency and properties of bitumen binders. Adv. Mater. Technol. 2016, 4, 35–40. [Google Scholar] [CrossRef]
- Rossi, C.O.; Spadafora, A.; Teltayev, B.; Izmailova, G.; Amerbayev, Y.; Bortolotti, V. Polymer modified bitumen: Rheological properties and structural characterization. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 390–397. [Google Scholar] [CrossRef]
- Oreshko, E.I.; Erasov, V.S.; Lashov, O.A.; Yakovlev, N.O. Stability study of monolithic and layered plates under compression. Inorg. Mater Appl. Res. 2022, 13, 588–598. [Google Scholar] [CrossRef]
- Erasov, V.S.; Oreshko, E.I. Short-time creep under soft loading and hard loading. Mater. Sci. 2019, 6, 11–17. [Google Scholar]
- Oreshko, E.I.; Erasov, V.S.; Lutsenko, A.N. Mathematical modeling of deformation constructional carbon fiber at a bend. Aviat. Mater. Technol. 2016, 2, 50–59. Available online: https://journal.viam.ru/ru/system/files/uploads/pdf/2016/2016_2_9_1.pdf (accessed on 12 July 2024).
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef]
- ASTM-D36-D36M-14; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2020; p. 5.
- EN 12593: 2015; Bitumen and Bituminous Binders. Determination of the Fraass Breaking Point. British Standards Institution: London, UK, 2015; p. 22.
- EN 13589: 2014; Bitumen and Bituminous Binders—Determination of the Tensile Properties of Modified Bitumen by the Force Ductility Method. German Version prEN 13589:2014. British Standards Institution: London, UK, 2014; p. 12.
- EN 1426: 2015; Bitumen and Bituminous Binders—Determination of Needle Penetration. German version EN 1426:2015. British Standards Institution: London, UK, 2015; p. 17.
- Gupta, S.; Patıdar, D.; Baboo, M.; Sharma, K.; Saxena, N.S. Investigation of Al Schottky junction on n-type CdS film deposited on polymer substrate. Front. Optoelectron. China 2010, 3, 321–327. [Google Scholar] [CrossRef]
- Oreshko, E.I.; Erasov, V.S.; Jastrebov, A.S. Prediction of strength and deformation characteristics of materials during tension and creep tests. Mater. Sci. 2019, 2, 3–8. [Google Scholar]
- Erasov, V.S.; Oreshko, E.I. Reasons for dependence of mechanical characteristics of material fracture resistance on sample sizes. Aviat. Mater. Technol. 2018, 3, 56–64. Available online: https://journal.viam.ru/ru/system/files/uploads/pdf/2018/2018_3_8_1.pdf (accessed on 12 July 2024).
- Ben Zair, M.; Jakarni, F.; Muniandy, R.; Hassim, S. A brief review: Application of recycled polyethylene terephthalate in asphalt pavement reinforcement. Sustainability 2021, 13, 1303. [Google Scholar] [CrossRef]
- El-Naga, I.A.; Ragab, M. Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Constr. Build. Mater. 2019, 219, 81–90. [Google Scholar] [CrossRef]
- Sojobi, A.; Nwobodo, S.E.; Aladegboye, O.J. Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent. Eng. 2016, 3, 113348. [Google Scholar] [CrossRef]
- Ashoor, A.; Kareem, M.M.; Al-Baiati, M.N. Improved asphalt binder using recycle polyethylene terephthalate polymer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 12094. [Google Scholar] [CrossRef]
- Al-Jumaili, M.A.H. Sustainability of asphalt paving materials containing different waste materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 12176. [Google Scholar] [CrossRef]
- Kakar, M.R.; Mikhailenko, P.; Piao, Z.; Bueno, M.; Poulikakos, L. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr. Build. Mater. 2021, 280, 122492. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Razali, A.R.; Razelan, I.S.M.; Jalil, S.A.; Noh, M.M.; Idris, A.A. Utilization of polyethylene terephthalate (PET) in bituminous mixture for improved performance of roads. IOP Conf. Ser. Mater. Sci. Eng. 2017, 203, 12005. [Google Scholar] [CrossRef]
- Cong, L.; Peng, J.; Guo, Z.; Wang, Q. Evaluation of fatigue cracking in asphalt mixtures based on surface energy. J. Mater. Civ. Eng. 2017, 29, 4015003. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Experimental characterization of rutting performance of Polyethylene Terephthalate modified asphalt mixtures under static and dynamic loads. Constr. Build. Mater. 2014, 65, 487–494. [Google Scholar] [CrossRef]
- Choudhary, R.; Kumar, A.; Murkute, K. Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: Dependence on PET size, PET content, and mixing process. Period. Polytech. Civ. Eng. 2018, 62, 685–693. [Google Scholar] [CrossRef]
- Rahmani, E.; Dehestani, M.; Beygi, M.H.A.; Allahyari, H.; Nikbin, I.M. On the mechanical properties of concrete containing waste pet particles. Construct. Build. Mater. 2013, 47, 1302–1308. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using waste plastic bottles as additive for stone mastic asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the unexplored potential of European waste materials for road construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Shiryaev, A.O.; Obukhov, A.G.; Vysotskaya, M.A.; Shekhovtsova, S.Y. Polymer Modifiers of Bitumen Binders; Bulletin of Belgorod State Technological University Named after V.G. Shukhov: Belgorod, Russia, 2017; Volume 11, pp. 48–54. [Google Scholar]
- Ince, C.B.; Geckil, T. Effects of recycled PET and TEOA on performance characteristics of bitumen. J. Croat. Assoc. Civ. Eng. 2022, 74, 105–114. [Google Scholar] [CrossRef]
- Mahrez, A.; Karim, M.R. Rheological evaluation of bituminous binder modified with waste plastic material. In Proceedings of the 5th International Symposium on Hydrocarbons & Chemistry (ISHC5), Sidi Fredj, Algiers, 23–25 May 2010; pp. 1–7. [Google Scholar]
- Prasad, A.R.; Sowmya, N.J. Bitumen modification with waste plastic and crumb rubber. Int. J. Eng. Res. Technol. 2015, 4, 1586–1591. [Google Scholar]
- Bary, E.M.A.; Farag, R.K.; Ragab, A.A.; Abdel-Monem, R.M.; Abo-Shanab, Z.L.; Saleh, A.M.M. Green asphalt construction with improved stability and dynamic mechanical properties. Polym. Bull. 2020, 77, 1729–1747. [Google Scholar] [CrossRef]
- Hu, J.; Fang, C.; Zhou, S.; Jiao, L.; Zhang, M.; Wu, D. Rheological properties of packaging-waste-polyethylene-modified asphalt. J. Vinyl Addit. Technol. 2015, 21, 215–219. [Google Scholar] [CrossRef]
- Safonov, V.A.; Danilova, V.N.; Ermakov, V.V.; Vorobyov, V.I. Mercury and methylmercury in surface waters of arid and humid regions, and the role of humic acids in mercury migration. Per. Tchê Quím. 2019, 16, 892–902. [Google Scholar] [CrossRef]
No | Microstructures of MBM Samples | Characteristic Features of Modified Bituminous Mixture Samples |
---|---|---|
1 | Homogeneous microstructure of MBM sample | |
2 | Good polymer distribution with virtually indistinguishable phases | |
3 | Reduced compatibility between bitumen and polymer (phase inversion observed) | |
4 | Increase in size of residual asphaltene phase formations | |
5 | Joint continuous morphology | |
6 | Increase in size of residual asphaltene phase formations | |
7 | Spherical shape of domains, corresponding to minimal phase boundary |
No. | Methods and Regulatory Documents | Essence of Methods |
---|---|---|
1 | ASTM D36/D36M-14: Standard test method for softening point of bitumen (ring-and-ball apparatus) [30] | This research method allows for determining the strength of modified bituminous mixture samples and the phase transition temperature from the solid state to the liquid state. It characterizes the thermal stability of modified bituminous mixture samples and their tendency to flow under heating conditions. |
2 | EN 12593: 2015: Bitumen and bituminous binders—determination of Fraass breaking point [31] | This research method allows for determining the temperature at which cracks appear in samples of modified bituminous mixtures, which can lead to their failure. Thermo-mechanical testing is performed under conditions of repeated static bending of modified bituminous mixture samples at low temperatures. |
3 | EN 13589: 2014: Bitumen and bituminous binders—determination of tensile properties of bituminous binders by tensile test method [32] | This research method allows for determining the ductility of modified bituminous mixture samples under static tensile loading until failure. |
4 | EN 1426: 2015: Bitumen and bituminous binders—determination of needle penetration [33] | The degree of penetration is determined as the distance in ten millimeters that a standard needle penetrates vertically into the sample material at a constant temperature. The standard penetration test was conducted at 25 °C over 5 s using the APN-360MG4 penetrometer. |
No. | Characteristic Name | Temperature, °C | Standard Value | Actual Value |
---|---|---|---|---|
1 | Density | 25 °C | 950–1500 kg/m2 | 1100 kg/m2 |
2 | Needle penetration depth | 25 °C | from 70 to 100 mm | 96 mm |
3 | Elongation | 25 °C | 62 cm | 54 cm |
0 °C | 3.7 cm | 3.7 cm | ||
4 | Softening point | 70 °C | up to 70 °C | 68 °C |
5 | Brittleness | −15 °C | −15 °C | −15 °С |
No. | Physical and Mechanical Properties of PET | Value |
---|---|---|
1 | Molecular Weight, g/mol | 60,000 |
2 | Density, g/cm3 | 138 |
3 | Tensile Strength, MPa | 170 |
4 | Elongation at Break, % | 50 |
5 | Longitudinal Elastic Modulus, MPa | 1700 |
6 | Impact Strength, kJ/m2 | 80 |
7 | Frost Resistance, °C | −50 |
8 | Water Absorption, % | 30 |
9 | Decomposition Temperature, °C | 345 |
10 | Melting Temperature, °C | 245 |
11 | Glass Transition Temperature, °C | 70 |
No. | Indicator | Value | ||||||
---|---|---|---|---|---|---|---|---|
1 | Modifier Content, % | 0 | 1 | 3 | 5 | 8 | 10 | 12 |
2 | Density, kg/m³ | 1100 | 1110 | 1127 | 1142 | 1218 | 1230 | 1276 |
3 | Needle Penetration Depth at 25 °C, mm | 96 | 73 | 71 | 67 | 56 | 53 | 50 |
4 | Tensile Strength at 25 °C, cm | 64 | 64 | 61 | 163 | 251 | 134 | 111 |
5 | Softening Point, °C | 72 | 75 | 78 | 85 | 98 | 99 | 100 |
6 | Fracture Temperature, °C | −15 | −21 | −23 | −25 | −33 | −34 | −35 |
7 | Water Absorption, % | 18.4 | 15.9 | 13.6 | 12.2 | 9.8 | 7.5 | 6 |
8 | Tensile Strength at Break, MPa | 4.1 | 4.4 | 6.2 | 8.5 | 9.5 | 7.8 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jexembayeva, A.; Konkanov, M.; Aruova, L.; Kirgizbayev, A.; Zhaksylykova, L. Modifying Bitumen with Recycled PET Plastics to Enhance Its Water Resistance and Strength Characteristics. Polymers 2024, 16, 3300. https://doi.org/10.3390/polym16233300
Jexembayeva A, Konkanov M, Aruova L, Kirgizbayev A, Zhaksylykova L. Modifying Bitumen with Recycled PET Plastics to Enhance Its Water Resistance and Strength Characteristics. Polymers. 2024; 16(23):3300. https://doi.org/10.3390/polym16233300
Chicago/Turabian StyleJexembayeva, Assel, Marat Konkanov, Lyazat Aruova, Akpan Kirgizbayev, and Lailya Zhaksylykova. 2024. "Modifying Bitumen with Recycled PET Plastics to Enhance Its Water Resistance and Strength Characteristics" Polymers 16, no. 23: 3300. https://doi.org/10.3390/polym16233300
APA StyleJexembayeva, A., Konkanov, M., Aruova, L., Kirgizbayev, A., & Zhaksylykova, L. (2024). Modifying Bitumen with Recycled PET Plastics to Enhance Its Water Resistance and Strength Characteristics. Polymers, 16(23), 3300. https://doi.org/10.3390/polym16233300