Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The current study aims to examine the potential use of recycled polyethylene terephthalate (RPET) plastic waste as a modifier for asphalt binder. Plastic bottles were collected, shredded, cleaned, melted, ground, then sieved. An asphalt binder with a penetration grade of 60/70 was used. The RPET plastic waste was blended with 60/70 penetration grade asphalt binder at five percentages (0, 5, 10, 15, and 20 %, by weight of asphalt binder) using a high shear mixer. To study the physical and mechanical properties of RPET-modified asphalt binders, both traditional and Super pave tests were conducted. The test results showed that by incorporating RPET into asphalt binder, the ductility and penetration values decreased, whereas the softening point and viscosity of asphalt binder increased. Furthermore, the rutting performance of RPET-modified asphalt binder, as presented by the rutting parameter (G*/sinδ), was enhanced by increasing the amount of RPET plastic waste at all testing temperatures. The high-temperature performance grade of asphalt binder was raised by one grade (from 64°C to 70°C) by adding 15% and 20% of RPET plastic waste. On the other hand, the low-temperature performance of asphalt binder, as presented by creep stiffness and m-value, was negatively affected by adding RPET. The low-temperature performance grade of asphalt binder was dropped by one grade (from −22°C to −16°C) by adding RPET plastic waste at percentages of 15 % and 20 %. Moreover, the fatigue cracking performance of asphalt binder, as presented by the fatigue parameter (G*.sinδ), was slightly reduced by adding RPET to the asphalt binder but remained lower than the acceptable Super pave limit (≤ 5000 kPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Siddiqui, Conversion of hazardous plastic wastes into useful chemical products, J. Hazard. Mater. 167(1–3) (2009) 728–735. https://doi.org/10.1016/j.jhazmat.2009.01.042

    Article  Google Scholar 

  2. B. Prusty, Use of Waste Polyethylene in Bituminous Concrete Mixes, (Bachelor Thesis), National Institute of Technology Rourkela, Rourkela, India, 2012.

    Google Scholar 

  3. Container Recycling Institute, PET bottle sales and wasting in the US. (Container-Recycling.org., 2015), http://www.container-recycling.org/index.php/pet-bottle-sales-and-wasting-in-the-us. Accessed 10 March 2020.

  4. M. K Eriksen, J. D. Christiansen, A. E. Daugaard, T. F. Astrup, Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling, Waste Manage. 96 (2019) 75–85. https://doi.org/10.1016/j.wasman.2019.07.005

    Article  Google Scholar 

  5. G. Lonca, P. Lesage, G. Majeau-Bettez, S. Bernard, M. Margni, Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the USA PET market. Resources, Conserv. Recycl. 162 (2020) 105013. https://doi.org/10.1016/j.resconrec.2020.105013

    Article  Google Scholar 

  6. D. Gere, T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test. 81 (2020) 106160 https://doi.org/10.1016/j.polymertesting.2019.106160

    Article  Google Scholar 

  7. M. Ubaidullah, A. M. Al-Enizi, S. Shaikh, M. A. Ghanem, R. S. Mane, Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions, J. King Saud Univer. Sci. 32(4) (2020) 2397–2405 https://doi.org/10.1016/j.jksus.2020.03.025

    Article  Google Scholar 

  8. W. Nabgan, B. Nabgan, T. A. T. Abdullah, N. Ngadi, A. A. Jalil, N. A. A. Fatah, H. Alqaraghuli, M. Tahir, Exploration of reaction mechanisms on the plastic waste polyethylene terephthalate (PET) dissolved in phenol steam reforming reaction to produce hydrogen and valuable liquid fuels, J. Analytical Appl. Pyrolysis 150 (2020) 104860 https://doi.org/10.1016/j.jaap.2020.104860

    Article  Google Scholar 

  9. K. Choudhary, K. S. Sangwan, D. Goyal, Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy, Procedia CIRP 80 (2019) 422–427 https://doi.org/10.1016/j.procir.2019.01.096

    Article  Google Scholar 

  10. J. Matsunami, S. Yoshida, O. Yokota, M. Nezuka, M. Tsuji, Y. Tamaura, Gasification of Waste Tyre and Plastic (PET) by Solar Thermochemical Process for Solar Energy Utilization, Solar Energy 65(1) (1999) 21–23 https://doi.org/10.1016/S0038-092X(98)00085-1

    Article  Google Scholar 

  11. K. Nováková, K. Šeps, H. Achten, Experimental development of a plastic bottle usable as a construction building block created out of polyethylene terephthalate: Testing PET(b) rick 1.0, J. Build. Eng. 12 (2017) 239–247 https://doi.org/10.1016/j.jobe.2017.05.015

    Article  Google Scholar 

  12. S. Perera, A. Arulrajah, Y. C. Wong, S. Horpibulsuk, F. Maghool, Utilizing recycled PET blends with demolition wastes as construction materials, Constr. Build. Mater. 221 (2019) 200–209 https://doi.org/10.1016/j.conbuildmat.2019.06.047

    Article  Google Scholar 

  13. N. K. Bui, T. Satomi, H. Takahashi, Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study, Waste Manage. 78 (2018) 79–93 https://doi.org/10.1016/j.wasman.2018.05.035

    Article  Google Scholar 

  14. P. O. Awoyera, A. Adesina, Plastic wastes to construction products: Status, limitations and future perspective, Case Studies Constr. Mater. 12 (2020) e00330 https://doi.org/10.1016/j.cscm.2020.e00330

    Google Scholar 

  15. H. H. Kim, M. S. Lee, S. J. Lee, Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR), Inter. J. Pavement Res. Technol. 12(2) (2019) 215–222 https://doi.org/10.1007/s42947-019-0027-y

    Article  Google Scholar 

  16. M. A. Notani, P. Hajikarimi, F. M. Nejad, A. Khodaii, Rutting resistance of toner-modified asphalt binder and mixture, Inter. J. Pavement Res. Technol. 13(1) (2020) 1–9 https://doi.org/10.1007/s42947-019-0131-z

    Article  Google Scholar 

  17. C. Li, J. Zou, W. Ke, G. Wang, T. Li, Y. Li, S. Li, B. Shu, C. Li, Laboratory evaluation of asphalt binder modified by waste carbon particles (WCP) reclaimed from printers, Inter. J. Pavement Res. Technol. (2020) https://doi.org/10.1007/s42947-020-0104-2

  18. K. Z. Ramadan, G. G. Al-Khateeb, M. M. Taamneh Mechanical properties of styrofoam-modified asphalt binders, Inter. J. Pavement Res. Technol. 13(2) (2020) 205–211 https://doi.org/10.1007/s42947-019-0102-4

    Article  Google Scholar 

  19. G. G. Al-Khateeb, T. S. Khedaywi, M. F. Irfaeya, Shear properties of waste glass-asphalt mastics, Inter. J. Pavement Res. Technol. 12(3) (2019) 307–314 https://doi.org/10.1007/s42947-019-0037-9

    Article  Google Scholar 

  20. M. Sarker, M. M. Rashid, Thermal degradation of poly (ethylene terephthalate) waste soft drinks bottles and low density polyethylene grocery bags, Inter. J. Sustain. Energy Environ. 1(3) (2013) 78–86.

    Google Scholar 

  21. L. T. Duarte, E. M. P. e Silva, J. R. Branco, V. F. Lins, Production and characterization of thermally sprayed polyethylene terephthalate coatings, Surface Coatings Technol. 182(2–3) (2004) 261–267 https://doi.org/10.1016/j.surfcoat.2003.08.062

    Article  Google Scholar 

  22. S. R. Shukla, A. M. Harad, L. S. Jawale, Recycling of waste PET into useful textile auxiliaries. Waste Manage. 28(1) (2008) 51–56 https://doi.org/10.1016/j.wasman.2006.11.002

    Article  Google Scholar 

  23. R. Navarro, S. Ferrandiz, J. Lopez, V. J. Seguí, The influence of polyethylene in the mechanical recycling of polyethylene terephthalate, J. Mater. Process. Technol. 195(1–3) (2008) 110–116 https://doi.org/10.1016/j.jmatprotec.2007.04.126

    Article  Google Scholar 

  24. M. Ameri, D. Nasr, Performance properties of devulcanized waste PET modified asphalt mixtures, Petrol. Sci. Technol. 35(1) (2016) 99–104 https://doi.org/10.1080/10916466.2016.1251457

    Article  Google Scholar 

  25. W. M. N. W. A. Rahman, A. F. A. Wahab, Green pavement using recycled polyethylene terephthalate (PET) as partial fine aggregate replacement in modified asphalt, Proc. Eng. 53 (2013) 124–128 https://doi.org/10.1016/j.proeng.2013.02.018

    Article  Google Scholar 

  26. E. Ahmadinia, M.. Zargar, M. R. Karim, M. Abdelaziz, P. Shafigh, Using waste plastic bottles as additive for stone mastic asphalt, Mater. Des. 32(10) (2011) 4844–4849 https://doi.org/10.1016/j.matdes.2011.06.016

    Article  Google Scholar 

  27. T. B. Moghaddam, M. Soltani, M. R. Karim, H. Baaj, Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology, Measure. 74 (2015) 159–169 https://doi.org/10.1016/j.measurement.2015.07.012

    Google Scholar 

  28. T. B. Moghaddam, M. Soltani, M. R. Karim, Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: a statistical analysis of the laboratory testing results, Mater. Des. 68 (2015) 88–96 https://doi.org/10.1016/j.matdes.2014.11.044

    Article  Google Scholar 

  29. M. Soltani, T. B. Moghaddam, M. R. Karim, H. Baaj, Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology, Eng. Failure Anal. 58 (2015) 238–248 https://doi.org/10.1016/j.engfailanal.2015.09.005

    Article  Google Scholar 

  30. L. Widojoko, P. E. Purnamasari, Study the use of cement and plastic bottle waste as ingredient added to the asphaltic concrete wearing course, Proc. Soci. Behav. Sci. 43 (2012) 832–841 https://doi.org/10.1016/j.sbspro.2012.04.158

    Article  Google Scholar 

  31. A. A. Badejo, A. A. Adekunle, O. O. Adekoya, J. M. Ndambuki, K. W. Kupolati, B. S. Bada, D. O. Omole, Plastic waste as strength modifiers in asphalt for a sustainable environment, African J. Sci. Technol. Innov. Develop. 9(2) (2017) 173–177 https://doi.org/10.1080/20421338.2017.1302681

    Article  Google Scholar 

  32. T. B. Moghaddam, M. R. Karim, T. Syammaun Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles, Constr. Build. Mater. 34 (2012) 236–242 https://doi.org/10.1016/j.conbuildmat.2012.02.054

    Article  Google Scholar 

  33. A. Modarres, H. Hamedi, Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes, Mater. Des. 61 (2014) 8–15 https://doi.org/10.1016/j.matdes.2014.04.046

    Article  Google Scholar 

  34. A. Arulrajah, S. Perera, Y. C. Wong, S. Horpibulsuk, F. Maghool, Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes, Constr. Build. Mater. 239 (2019) 117819 https://doi.org/10.1016/j.conbuildmat.2019.117819

    Article  Google Scholar 

  35. E. Ahmadinia, M. Zargar, M. R. Karim, M. Abdelaziz, E. Ahmadinia, Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt, Constr. Build. Mater. 36 (2012) 984–989 https://doi.org/10.1016/j.conbuildmat.2012.06.015

    Article  Google Scholar 

  36. D. Movilla-Quesada, A. C. Raposeiras, L. T. Silva-Klein, P. Lastra-González, D. Castro-Fresno, Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen, Waste Manage. 87 (2019) 751–760 https://doi.org/10.1016/j.wasman.2019.03.018

    Article  Google Scholar 

  37. T. B. Moghaddam, M. Soltani, M. R. Karim, Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test, Mater. Des. 53 (2014) 317–324 https://doi.org/10.1016/j.matdes.2013.07.015

    Article  Google Scholar 

  38. T. B. Moghaddam, M. Soltani, M. R. Karim, Experimental characterization of rutting performance of polyethylene terephthalate modified asphalt mixtures under static and dynamic loads, Constr. Build. Mater. 65 (2014) 487–494 https://doi.org/10.1016/j.conbuildmat.2014.05.006

    Article  Google Scholar 

  39. H. Taherkhani, M. R. Arshadi, Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate, Road Mater. Pavement Des. 20(2) (2017) 381–398 https://doi.org/10.1080/14680629.2017.1395354

    Article  Google Scholar 

  40. J. D. A. A. E. Silva, J. K. G. Rodrigues, M. W. de Carvalho, L. C. D. F. L. Lucena, E. H. Cavalcante, Mechanical performance of asphalt mixtures using polymermicronized PET-modified binder, Road Mater. Pavement Des. 19(4) (2018) 1001–1009 https://doi.org/10.1080/14680629.2017.1283353

    Article  Google Scholar 

  41. M. Gürü, M. K. Çubuk, D. Arslan, S. A. Farzanian, İ. Bilici, An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material, J. Hazard. Mater. 279 (2014) 302–310 https://doi.org/10.1016/j.jhazmat.2014.07.018

    Article  Google Scholar 

  42. R. K. Padhan, A. Sreeram, Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives, Constr. Build. Mater. 188 (2018) 772–780 https://doi.org/10.1016/j.conbuildmat.2018.08.155

    Article  Google Scholar 

  43. D. Casey, C. McNally, A. Gibney, M. D. Gilchrist, Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conserv. Recycl. 52(10) (2008) 1167–1174 https://doi.org/10.1016/j.resconrec.2008.06.002

    Article  Google Scholar 

  44. Z. Leng, A. Sreeram, R. K. Padhan, Z. Tan, Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP), J. Clean. Prod. 196 (2018) 615–625 https://doi.org/10.1016/j.jclepro.2018.06.119

    Article  Google Scholar 

  45. A. Ameli, J. Maher, A. Mosavi, N. Nabipour, R. Babagoli, N. Norouzi, Performance evaluation of binders and Stone Matrix Asphalt (SMA) mixtures modified by Ground Tire Rubber (GTR), waste Polyethylene Terephthalate (PET) and Anti Stripping Agents (ASAs), Constr. Build. Mater. 251 (2020) 118932 https://doi.org/10.1016/j.conbuildmat.2020.118932

    Article  Google Scholar 

  46. American Association of State Highway and Transportation Officials, Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer, AASHTO T316-08, AASHTO, Washington DC, 2008.

    Google Scholar 

  47. American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), AASHTO T315-8, AASHTO, Washington DC, 2008.

    Google Scholar 

  48. American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR), AASHTO T313-8. AASHTO, Washington DC, 2008.

    Google Scholar 

  49. American Society for Testing and Materials, Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). D 2872. ASTM International, West Conshohocken, PA, USA, 2019.

    Google Scholar 

  50. American Association of State Highway and Transportation Officials, Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV), AASHTO R 28-09, AASHTO, Washington DC, 2009.

    Google Scholar 

  51. R. Choudhary, A. Kumar, K. Murkute, Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: dependence on PET size, PET content, and mixing process, Periodica Polytechnica Civ. Eng. 62(3) (2018) 685–693 https://doi.org/10.3311/PPci.10797

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhar M. Taamneh.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuaddous, M., Taamneh, M.M. & Rabab’ah, S.R. The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. Int. J. Pavement Res. Technol. 14, 579–587 (2021). https://doi.org/10.1007/s42947-020-0120-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0120-2

Keywords

Navigation