Abstract
The current study aims to examine the potential use of recycled polyethylene terephthalate (RPET) plastic waste as a modifier for asphalt binder. Plastic bottles were collected, shredded, cleaned, melted, ground, then sieved. An asphalt binder with a penetration grade of 60/70 was used. The RPET plastic waste was blended with 60/70 penetration grade asphalt binder at five percentages (0, 5, 10, 15, and 20 %, by weight of asphalt binder) using a high shear mixer. To study the physical and mechanical properties of RPET-modified asphalt binders, both traditional and Super pave tests were conducted. The test results showed that by incorporating RPET into asphalt binder, the ductility and penetration values decreased, whereas the softening point and viscosity of asphalt binder increased. Furthermore, the rutting performance of RPET-modified asphalt binder, as presented by the rutting parameter (G*/sinδ), was enhanced by increasing the amount of RPET plastic waste at all testing temperatures. The high-temperature performance grade of asphalt binder was raised by one grade (from 64°C to 70°C) by adding 15% and 20% of RPET plastic waste. On the other hand, the low-temperature performance of asphalt binder, as presented by creep stiffness and m-value, was negatively affected by adding RPET. The low-temperature performance grade of asphalt binder was dropped by one grade (from −22°C to −16°C) by adding RPET plastic waste at percentages of 15 % and 20 %. Moreover, the fatigue cracking performance of asphalt binder, as presented by the fatigue parameter (G*.sinδ), was slightly reduced by adding RPET to the asphalt binder but remained lower than the acceptable Super pave limit (≤ 5000 kPa).
Similar content being viewed by others
References
M. N. Siddiqui, Conversion of hazardous plastic wastes into useful chemical products, J. Hazard. Mater. 167(1–3) (2009) 728–735. https://doi.org/10.1016/j.jhazmat.2009.01.042
B. Prusty, Use of Waste Polyethylene in Bituminous Concrete Mixes, (Bachelor Thesis), National Institute of Technology Rourkela, Rourkela, India, 2012.
Container Recycling Institute, PET bottle sales and wasting in the US. (Container-Recycling.org., 2015), http://www.container-recycling.org/index.php/pet-bottle-sales-and-wasting-in-the-us. Accessed 10 March 2020.
M. K Eriksen, J. D. Christiansen, A. E. Daugaard, T. F. Astrup, Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling, Waste Manage. 96 (2019) 75–85. https://doi.org/10.1016/j.wasman.2019.07.005
G. Lonca, P. Lesage, G. Majeau-Bettez, S. Bernard, M. Margni, Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the USA PET market. Resources, Conserv. Recycl. 162 (2020) 105013. https://doi.org/10.1016/j.resconrec.2020.105013
D. Gere, T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test. 81 (2020) 106160 https://doi.org/10.1016/j.polymertesting.2019.106160
M. Ubaidullah, A. M. Al-Enizi, S. Shaikh, M. A. Ghanem, R. S. Mane, Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions, J. King Saud Univer. Sci. 32(4) (2020) 2397–2405 https://doi.org/10.1016/j.jksus.2020.03.025
W. Nabgan, B. Nabgan, T. A. T. Abdullah, N. Ngadi, A. A. Jalil, N. A. A. Fatah, H. Alqaraghuli, M. Tahir, Exploration of reaction mechanisms on the plastic waste polyethylene terephthalate (PET) dissolved in phenol steam reforming reaction to produce hydrogen and valuable liquid fuels, J. Analytical Appl. Pyrolysis 150 (2020) 104860 https://doi.org/10.1016/j.jaap.2020.104860
K. Choudhary, K. S. Sangwan, D. Goyal, Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy, Procedia CIRP 80 (2019) 422–427 https://doi.org/10.1016/j.procir.2019.01.096
J. Matsunami, S. Yoshida, O. Yokota, M. Nezuka, M. Tsuji, Y. Tamaura, Gasification of Waste Tyre and Plastic (PET) by Solar Thermochemical Process for Solar Energy Utilization, Solar Energy 65(1) (1999) 21–23 https://doi.org/10.1016/S0038-092X(98)00085-1
K. Nováková, K. Šeps, H. Achten, Experimental development of a plastic bottle usable as a construction building block created out of polyethylene terephthalate: Testing PET(b) rick 1.0, J. Build. Eng. 12 (2017) 239–247 https://doi.org/10.1016/j.jobe.2017.05.015
S. Perera, A. Arulrajah, Y. C. Wong, S. Horpibulsuk, F. Maghool, Utilizing recycled PET blends with demolition wastes as construction materials, Constr. Build. Mater. 221 (2019) 200–209 https://doi.org/10.1016/j.conbuildmat.2019.06.047
N. K. Bui, T. Satomi, H. Takahashi, Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study, Waste Manage. 78 (2018) 79–93 https://doi.org/10.1016/j.wasman.2018.05.035
P. O. Awoyera, A. Adesina, Plastic wastes to construction products: Status, limitations and future perspective, Case Studies Constr. Mater. 12 (2020) e00330 https://doi.org/10.1016/j.cscm.2020.e00330
H. H. Kim, M. S. Lee, S. J. Lee, Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR), Inter. J. Pavement Res. Technol. 12(2) (2019) 215–222 https://doi.org/10.1007/s42947-019-0027-y
M. A. Notani, P. Hajikarimi, F. M. Nejad, A. Khodaii, Rutting resistance of toner-modified asphalt binder and mixture, Inter. J. Pavement Res. Technol. 13(1) (2020) 1–9 https://doi.org/10.1007/s42947-019-0131-z
C. Li, J. Zou, W. Ke, G. Wang, T. Li, Y. Li, S. Li, B. Shu, C. Li, Laboratory evaluation of asphalt binder modified by waste carbon particles (WCP) reclaimed from printers, Inter. J. Pavement Res. Technol. (2020) https://doi.org/10.1007/s42947-020-0104-2
K. Z. Ramadan, G. G. Al-Khateeb, M. M. Taamneh Mechanical properties of styrofoam-modified asphalt binders, Inter. J. Pavement Res. Technol. 13(2) (2020) 205–211 https://doi.org/10.1007/s42947-019-0102-4
G. G. Al-Khateeb, T. S. Khedaywi, M. F. Irfaeya, Shear properties of waste glass-asphalt mastics, Inter. J. Pavement Res. Technol. 12(3) (2019) 307–314 https://doi.org/10.1007/s42947-019-0037-9
M. Sarker, M. M. Rashid, Thermal degradation of poly (ethylene terephthalate) waste soft drinks bottles and low density polyethylene grocery bags, Inter. J. Sustain. Energy Environ. 1(3) (2013) 78–86.
L. T. Duarte, E. M. P. e Silva, J. R. Branco, V. F. Lins, Production and characterization of thermally sprayed polyethylene terephthalate coatings, Surface Coatings Technol. 182(2–3) (2004) 261–267 https://doi.org/10.1016/j.surfcoat.2003.08.062
S. R. Shukla, A. M. Harad, L. S. Jawale, Recycling of waste PET into useful textile auxiliaries. Waste Manage. 28(1) (2008) 51–56 https://doi.org/10.1016/j.wasman.2006.11.002
R. Navarro, S. Ferrandiz, J. Lopez, V. J. Seguí, The influence of polyethylene in the mechanical recycling of polyethylene terephthalate, J. Mater. Process. Technol. 195(1–3) (2008) 110–116 https://doi.org/10.1016/j.jmatprotec.2007.04.126
M. Ameri, D. Nasr, Performance properties of devulcanized waste PET modified asphalt mixtures, Petrol. Sci. Technol. 35(1) (2016) 99–104 https://doi.org/10.1080/10916466.2016.1251457
W. M. N. W. A. Rahman, A. F. A. Wahab, Green pavement using recycled polyethylene terephthalate (PET) as partial fine aggregate replacement in modified asphalt, Proc. Eng. 53 (2013) 124–128 https://doi.org/10.1016/j.proeng.2013.02.018
E. Ahmadinia, M.. Zargar, M. R. Karim, M. Abdelaziz, P. Shafigh, Using waste plastic bottles as additive for stone mastic asphalt, Mater. Des. 32(10) (2011) 4844–4849 https://doi.org/10.1016/j.matdes.2011.06.016
T. B. Moghaddam, M. Soltani, M. R. Karim, H. Baaj, Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology, Measure. 74 (2015) 159–169 https://doi.org/10.1016/j.measurement.2015.07.012
T. B. Moghaddam, M. Soltani, M. R. Karim, Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: a statistical analysis of the laboratory testing results, Mater. Des. 68 (2015) 88–96 https://doi.org/10.1016/j.matdes.2014.11.044
M. Soltani, T. B. Moghaddam, M. R. Karim, H. Baaj, Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology, Eng. Failure Anal. 58 (2015) 238–248 https://doi.org/10.1016/j.engfailanal.2015.09.005
L. Widojoko, P. E. Purnamasari, Study the use of cement and plastic bottle waste as ingredient added to the asphaltic concrete wearing course, Proc. Soci. Behav. Sci. 43 (2012) 832–841 https://doi.org/10.1016/j.sbspro.2012.04.158
A. A. Badejo, A. A. Adekunle, O. O. Adekoya, J. M. Ndambuki, K. W. Kupolati, B. S. Bada, D. O. Omole, Plastic waste as strength modifiers in asphalt for a sustainable environment, African J. Sci. Technol. Innov. Develop. 9(2) (2017) 173–177 https://doi.org/10.1080/20421338.2017.1302681
T. B. Moghaddam, M. R. Karim, T. Syammaun Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles, Constr. Build. Mater. 34 (2012) 236–242 https://doi.org/10.1016/j.conbuildmat.2012.02.054
A. Modarres, H. Hamedi, Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes, Mater. Des. 61 (2014) 8–15 https://doi.org/10.1016/j.matdes.2014.04.046
A. Arulrajah, S. Perera, Y. C. Wong, S. Horpibulsuk, F. Maghool, Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes, Constr. Build. Mater. 239 (2019) 117819 https://doi.org/10.1016/j.conbuildmat.2019.117819
E. Ahmadinia, M. Zargar, M. R. Karim, M. Abdelaziz, E. Ahmadinia, Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt, Constr. Build. Mater. 36 (2012) 984–989 https://doi.org/10.1016/j.conbuildmat.2012.06.015
D. Movilla-Quesada, A. C. Raposeiras, L. T. Silva-Klein, P. Lastra-González, D. Castro-Fresno, Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen, Waste Manage. 87 (2019) 751–760 https://doi.org/10.1016/j.wasman.2019.03.018
T. B. Moghaddam, M. Soltani, M. R. Karim, Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test, Mater. Des. 53 (2014) 317–324 https://doi.org/10.1016/j.matdes.2013.07.015
T. B. Moghaddam, M. Soltani, M. R. Karim, Experimental characterization of rutting performance of polyethylene terephthalate modified asphalt mixtures under static and dynamic loads, Constr. Build. Mater. 65 (2014) 487–494 https://doi.org/10.1016/j.conbuildmat.2014.05.006
H. Taherkhani, M. R. Arshadi, Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate, Road Mater. Pavement Des. 20(2) (2017) 381–398 https://doi.org/10.1080/14680629.2017.1395354
J. D. A. A. E. Silva, J. K. G. Rodrigues, M. W. de Carvalho, L. C. D. F. L. Lucena, E. H. Cavalcante, Mechanical performance of asphalt mixtures using polymermicronized PET-modified binder, Road Mater. Pavement Des. 19(4) (2018) 1001–1009 https://doi.org/10.1080/14680629.2017.1283353
M. Gürü, M. K. Çubuk, D. Arslan, S. A. Farzanian, İ. Bilici, An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material, J. Hazard. Mater. 279 (2014) 302–310 https://doi.org/10.1016/j.jhazmat.2014.07.018
R. K. Padhan, A. Sreeram, Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives, Constr. Build. Mater. 188 (2018) 772–780 https://doi.org/10.1016/j.conbuildmat.2018.08.155
D. Casey, C. McNally, A. Gibney, M. D. Gilchrist, Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conserv. Recycl. 52(10) (2008) 1167–1174 https://doi.org/10.1016/j.resconrec.2008.06.002
Z. Leng, A. Sreeram, R. K. Padhan, Z. Tan, Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP), J. Clean. Prod. 196 (2018) 615–625 https://doi.org/10.1016/j.jclepro.2018.06.119
A. Ameli, J. Maher, A. Mosavi, N. Nabipour, R. Babagoli, N. Norouzi, Performance evaluation of binders and Stone Matrix Asphalt (SMA) mixtures modified by Ground Tire Rubber (GTR), waste Polyethylene Terephthalate (PET) and Anti Stripping Agents (ASAs), Constr. Build. Mater. 251 (2020) 118932 https://doi.org/10.1016/j.conbuildmat.2020.118932
American Association of State Highway and Transportation Officials, Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer, AASHTO T316-08, AASHTO, Washington DC, 2008.
American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), AASHTO T315-8, AASHTO, Washington DC, 2008.
American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR), AASHTO T313-8. AASHTO, Washington DC, 2008.
American Society for Testing and Materials, Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). D 2872. ASTM International, West Conshohocken, PA, USA, 2019.
American Association of State Highway and Transportation Officials, Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV), AASHTO R 28-09, AASHTO, Washington DC, 2009.
R. Choudhary, A. Kumar, K. Murkute, Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: dependence on PET size, PET content, and mixing process, Periodica Polytechnica Civ. Eng. 62(3) (2018) 685–693 https://doi.org/10.3311/PPci.10797
Author information
Authors and Affiliations
Corresponding author
Additional information
Peer review under responsibility of Chinese Society of Pavement Engineering.
Rights and permissions
About this article
Cite this article
Abuaddous, M., Taamneh, M.M. & Rabab’ah, S.R. The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. Int. J. Pavement Res. Technol. 14, 579–587 (2021). https://doi.org/10.1007/s42947-020-0120-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42947-020-0120-2