Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends
"> Figure 1
<p>The composition of the three-layer insulation coating with the HDPE-based outer layer.</p> "> Figure 2
<p>Relative elongation at break at test temperatures of +23 °C (Ɛ<sub>b</sub><sup>+23</sup>) and −45 °C (Ɛ<sub>b</sub><sup>−45</sup>) as a function of <span class="html-italic">M</span><sub>w</sub> for the bimodal HDPE samples.</p> "> Figure 3
<p>Izod impact strength at test temperatures of +23 °C (A<sub>Izod</sub><sup>+23</sup><b>)</b> and −45 °C (A<sub>Izod</sub><sup>−40</sup>) as a function of <span class="html-italic">M</span><sub>w</sub> for the bimodal HDPE samples.</p> "> Figure 4
<p>The diagram showing the dependence between the calculated parameter “nil ductility temperature (NDT)” [<a href="#B19-polymers-13-01821" class="html-bibr">19</a>] and <span class="html-italic">M</span><sub>w</sub> for the bimodal HDPE samples.</p> "> Figure 5
<p>The data on ε<sup>−45</sup> for the LDPE, LLDPE-1, and LLDPE-2 samples at different strain rates (50 and 300 mm/min).</p> "> Figure 6
<p>The data on impact strength for the LDPE, LLDPE-1, and LLDPE-2 samples in the temperature range from −60 °C to +23 °C.</p> "> Figure 7
<p>The curves showing molecular weight distribution (1) and content of the comonomer (1-butene) in LLDPE-1 fractions.</p> "> Figure 8
<p>The curves showing molecular weight distribution (1), total content of the comonomers (2), content of the comonomer (1-butene) (3), and content of the comonomer (1-hexene) (4) in all the LLDPE-2 fractions.</p> "> Figure 9
<p>The MWD curves of the samples of bimodal HDPE and ter-co-LLDPE and their blends.</p> "> Figure 10
<p>The effect of LLDPE on the DSC curves of HDPE/LLDPE blends.</p> "> Figure 11
<p>The effect of weight fraction of LLDPE in HDPE on relative elongation at break at +23 and −45 °C.</p> "> Figure 12
<p>The Izod impact strength of HDPE, LLDPE, and their blends at different test temperatures: HDPE (1), HDPE/LLDPE = 70/30 (2), 50/50 (3), 20/80 (4), and LLDPE (5).</p> "> Figure 13
<p>The effect of weight fraction of LLDPE on nil ductility temperature.</p> "> Figure 14
<p>The effect of LLDPE on the elasticity modulus of the HDPE/LLDPE blends (DMA).</p> "> Figure 15
<p>The effect of LLDPE on the loss modulus of the HDPE/LLDPE blends (DMA).</p> "> Figure 16
<p>The results of DMA of HDPE, LLDPE, and their blends.</p> "> Figure 17
<p>The effect of LLDPE on the loss modulus of HDPE/LLDPE blends (DMA).</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Molecular and Thermal Characteristics and Low-Temperature Properties of Bimodal HDPE
3.2. Low-Temperature Properties of LLDPE and LDPE
3.3. Binary Compositions Based on HDPE and LLDPE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References and Notes
- Multimodal Polymers with Supported Catalysts; Springer: Cham, Switzerland, 2019; pp. 243–265. [CrossRef]
- Jeremic, D. Polyethylene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–42. [Google Scholar] [CrossRef]
- Deberdeev, R.J.; Kurnosov, V.V.; Sergeeva, J.A.; Stoyanov, O.V.; Wolf, R.; Zaikov, G.E.; Haghi, A.K. 1 Effect of a Primary Aromatic Amine on Properties and Structure of HDPE. In Pathways to Modern Physical Chemistry; Apple Academic Press: London, UK, 2016; p. 428. [Google Scholar] [CrossRef]
- Moghadam, A.H.; Ahmadizadeh, S.; Monfared, A.H. Corrosion and Mechanical Performance of Three-Layer Polyethylene and dual Layer FBE Coating Systems for Gas Transmission Pipelines, EUROCORR 2016 Corrosion Congress in Europe. 2016, pp. 1–10. Available online: http://eurocorr.efcweb.org/2016/abstracts/22/52992-Ahmadizadeh.pdf (accessed on 15 April 2021).
- Samimi, A.; Zarinabadi, S. An Analysis of Polyethylene Coating Corrosion in Oil and Gas Pipelines. Am. J. Sci. 2011, 7, 103201036. Available online: http://www.jofamericanscience.org/journals/am-sci/am0701/102_4313am0701_1032_1036.pdf (accessed on 15 April 2021).
- Haimbl, J.G.; Geiser, J. Polyethylene Coatings in Europe: A Look Back on 30 Years of Experience (No. CONF-9510266-); Gulf Publishing Co.: Houston, TX, USA, 1995. Available online: https://www.osti.gov/biblio/237687 (accessed on 15 April 2021).
- DIN-30670—Polyethylene Coating for Steel Pipes & Fittings.
- CAN/CAZ-Z245.21-06—External Polyethylene Coating for Pipes
- STO Gazprom 2-2.3-130—Technical Requirements for Outdoor Anti-Corrosion Polyethylene Coatings of Pipes of Factory Application for Construction, Reconstruction and Capital Repair of Underground and Marine Gas Pipelines with Experiment
- ISO-21809-1—Petroleum & Natural Gas Industries—External Coatings for Buried and Submereged Pipelines Used in Pipelines Transportation System Part-1 (3 layer PE & 3 layer PP)
- Vasile, C.; Pascu, M. Practical Guide to Polyethylene; iSmithers Rapra Publishing: Akron, OH, USA, 2005. [Google Scholar]
- ZEUS. Low Temperature Properties of Polymers. 2021. Available online: http://minhajaneladepvc.com.br/uploads/plastics_low_temp%20-%20spaghetti.pdf (accessed on 15 April 2021).
- Weissmann, D.; Alexander, H. A New Brittleness Criterion for Low Density Polyethylene Films. Int. J. Polym. Mater. 1974, 3, 33–50. [Google Scholar] [CrossRef]
- Zewi, I.G.; Rudik, W.J.; Corneliussen, R.D.; Lind, E.V. The ductile-brittle transition of low-density polyethylene. Polym. Eng. Sci. 1980, 20, 622–629. [Google Scholar] [CrossRef]
- Brown, N.; Ward, I.M. The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J. Mater. Sci. 1983, 18, 1405–1420. [Google Scholar] [CrossRef]
- Mandelkern, L.; Smith, F.L.; Failla, M.; Kennedy, M.A.; Peacock, A.J. The brittle-ductile transition in linear polyethylene. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 491–493. [Google Scholar] [CrossRef]
- Lu, X.; Qian, R.; Brown, N. The effect of crystallinity on fracture and yielding of polyethylenes. Polymer 1995, 36, 4239–4244. [Google Scholar] [CrossRef]
- Woo, L.; Ling, M.T.; Westphal, S.P. Dynamic mechanical analysis (DMA) and low temperature impact properties of metallocene polyethylenes. Thermochim. Acta 1996, 272, 171–179. [Google Scholar] [CrossRef]
- Kitao, K. A study of brittle-ductile transition in polyethylene. Polym. Eng. Sci. 1997, 37, 777–788. [Google Scholar] [CrossRef]
- Peacock, A.J.; Mandelkern, L.; Alamo, R.G.; Fatou, J.G. The influence of the deformation temperature on the tensile properties of polyethylenes. J. Mater. Sci. 1998, 33, 2255–2268. [Google Scholar] [CrossRef]
- Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Shundrina, I.K.; Matsko, M.A.; Baskakova, K.I.; Echevskaya, L.G.; Nikolaeva, M.I.; Shundrin, L.A.; Zakharov, V.A. Dynamic mechanical analysis of ethylene/1-hexene copolymers: The effect of the catalyst type on the short-chain branching distribution and properties of the amorphous and crystalline phases. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Karasev, A.; Andreyeva, I.; Domareva, N.; Kosmatykh, K.; Karaseva, M.; Domnicheva, N. Relationship between the mechanical behaviour and molecular weight distribution of high density polyethylene. Polym. Sci. USSR 1970, 12, 1275–1288. [Google Scholar] [CrossRef]
- Karasev, A.N.; Andreeva, I.N.; Karaseva, M.G.; Domareva, N.M. Impact strength of high-density polyethylene with various molecular weight distributions. Polym. Mech. 1973, 9, 807–809. [Google Scholar] [CrossRef]
- Anker, M.; Leiden, L.; Aarila, J. Low Temperature pe Topcoat. U.S. Patent Application No. 13/720,582, (WO2007141022A1), 2013. [Google Scholar]
- Äärilä, J.; Kela, J.; Purmonen, J. Process for Producing a Coated Pipe, EP. Patent Application No 16190968, (WO 2018060029), 2017. [Google Scholar]
- Plochocki, A.P. Polymer Blends; Paul, D.R., Newmann, S., Eds.; Academic Press: Cambridge, MA, USA, 1978; Volume 2. [Google Scholar]
- Utracki, L.A. Polyethylenes and Their Blends; Metzler, J.B., Ed.; Springer Publishing: New York, NY, USA, 2014; Volume 1, pp. 1559–1732. [Google Scholar]
- Gregory, B.H. Extrusion Coating: A Process Manual; Trafford Publishing: Bloomington, IN, USA, 2010. [Google Scholar]
- Polyolefin Blends; Wiley: Hoboken, NJ, USA, 2007.
- Jasso-Gastinel, C.F.; Kenny, J.M. (Eds.) Modification of Polymer Properties; William Andrew: Norwich, NY, USA, 2017. [Google Scholar]
- Elhrari, W.; Shebani, A.; Klash, A.; Elhabishi, R.; Abdsalam, S.; Elbreki, H. The Influence of LDPE Content on the Mechanical Properties of HDPE/LDPE Blends. Res. Dev. Mater. Sci. 2018, 7, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Salakhov, I.; Chalykh, A.; Shaidullin, N.; Shapagin, A.; Budylin, N.; Khasbiullin, R.; Nifant’Ev, I.; Gerasimov, V. Phase Equilibria and Interdiffusion in Bimodal High-Density Polyethylene (HDPE) and Linear Low-Density Polyethylene (LLDPE) Based Compositions. Polymer 2021, 13, 811. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.; Maddams, W.F. Infrared spectroscopic studies on polyethylene, 1. The measurement of low levels of chain branching. Die Makromol. Chem. Macromol. Chem. Phys. 1976, 177, 437–448. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Zakharov, V.A.; Golovin, A.V.; Mikenas, T.B. Molecular structure of polyethylene produced with supported vanadium-magnesium catalyst. Macromol. Chem. Phys. 1999, 200, 1434–1438. [Google Scholar] [CrossRef]
- Akkapeddi, M.K. Commercial Polymer Blends. In Polymer Blends Handbook; Springer Publishing: New York, NY, USA, 2003; p. 1023. [Google Scholar] [CrossRef]
- Kurian, P.; George, K.E.; Francis, D.J. Effect of controlled crosslinking on the mechanical and rheological properties of HDPE/LLDPE blends. Eur. Polym. J. 1992, 28, 113–116. [Google Scholar] [CrossRef]
- Grellmann, W.; Anderson, P.I. Polymer Testing; Seidler, S., Ed.; Hanser: Munich, Germany, 2007; pp. 83–102. [Google Scholar]
- Jones, M.A.; Walton, K.L.; Reinhardt, C. New Polyolefin Low Temperature Impact Modifier. In Proceedings of the SPE Polyolefins Conference, Houston, TX, USA, 21–24 February 2010. [Google Scholar]
- Kissin, Y.V.; Mink, R.I.; Nowlin, T.E. Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 4255–4272. [Google Scholar] [CrossRef]
- Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A.; Nikolaeva, M.I.; Mikenas, T.B.; Vanina, M.P. Study of Multi-Site Nature of Supported Ziegler-Natta Catalysts in Ethylene-Hexene-1 Copolymerization. Macromol. Symp. 2009, 282, 157–166. [Google Scholar] [CrossRef]
- Nikolaeva, M.I.; Matsko, M.A.; Echevskaya, L.G.; Mikenas, T.B.; Zakharov, V.A. Copolymerization of ethylene with α-olefins over supported titanium-magnesium catalysts. II. Comonomer as a chain transfer agent. J. Appl. Polym. Sci. 2012, 125, 2042–2049. [Google Scholar] [CrossRef]
- Soares, J.B.P.; Abbott, R.F.; Willis, J.N.; Liu, X. A new methodology for studying multiple-site-type catalysts for the copolymerization of olefins. Macromol. Chem. Phys. 1996, 197, 3383–3396. [Google Scholar] [CrossRef]
- Soares, J.B.P.; Kim, J.D.; Rempel, G.L. Analysis and Control of the Molecular Weight and Chemical Composition Distributions of Polyolefins Made with Metallocene and Ziegler−Natta Catalysts. Ind. Eng. Chem. Res. 1997, 36, 1144–1150. [Google Scholar] [CrossRef]
- Androsch, R.; Di Lorenzo, M.L.; Schick, C.; Wunderlich, B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 2010, 51, 4639–4662. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Locker, C.R.; Veld, P.J.I.T.; Rutledge, G.C. Effect of Short Chain Branching on the Interlamellar Structure of Semicrystalline Polyethylene. Macromolecules 2017, 50, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Andrianova, G.P. Physico-Chemistry of Polyolefins; Chimia: Moscow, Russia, 1974. [Google Scholar]
- Fakirov, S.; Krasteva, B. On the Glass Transition Temperature of Polyethylene as Revealed by Microhardness Measurements. J. Macromol. Sci. Part B 2000, 39, 297–301. [Google Scholar] [CrossRef]
- Bensason, S.; Minick, J.; Moet, A.; Chum, S.; Hiltner, A.; Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1301–1315. [Google Scholar] [CrossRef]
- Menard, K.P. An Introduction to Dynamic Mechanical Analysis. Dyn. Mech. Anal. 1999, 2, 3–10. [Google Scholar] [CrossRef]
- Nitta, K.-H.; Tanaka, A. Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 2001, 42, 1219–1226. [Google Scholar] [CrossRef]
- Simanke, A.G.; Galland, G.B.; Freitas, L.L.; Da Jornada, J.A.H.; Quijada, R.; Mauler, R.S. Dynamic-Mechanical Properties of Ethylene/α-Olefin Copolymers Prepared by a Metallocene Catalyst. Macromol. Chem. Phys. 2001, 202, 172–179. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Zhang, Z.; Ren, Y.; Chen, L.; Sun, X.; Liang, W. Effects of ethylene-octene copolymer (POE) on the brittle to ductile transition of high-density polyethylene/POE blends. Polym. Eng. Sci. 2020, 60, 2640–2652. [Google Scholar] [CrossRef]
Sample Name | Type of Comonomer | Comonomer Content, wt.%. | Density, g/cm3 | MFI, g/10 min (5.0 kg/190 °C) |
---|---|---|---|---|
HDPE-1 | 1-Hexene | 2.2 | 0.948 | 0.2 |
HDPE-2 | 1-Hexene | 2.1 | 0.949 | 0.35 |
HDPE-3 | 1-Hexene | 2.2 | 0.948 | 0.5 |
HDPE-4 | 1-Hexene | 2.0 | 0.950 | 1.1 |
HDPE-5 | 1-Hexene | 2.1 | 0.948 | 1.6 |
HDPE-6 | 1-Hexene | 2.3 | 0.947 | 2.0 |
Sample Name | Type of the Comonomer | Density, g/cm3 | MFI, g/10 min (5.0 kg/190 °C) |
---|---|---|---|
LDPE-1 | - | 0.920 | 6.4 |
LLDPE-1 (bi-co-LLDPE) | 1-Butene | 0.918 | 7.7 |
LLDPE-2 (ter-co-LLDPE) | 1-Butene/1-Hexene | 0.918 | 8.2 |
Name of the Composition | Weight Fraction of LLDPE, wt.% | Weight Fraction of HDPE, wt.% |
---|---|---|
100/0 (HDPE) | 0 | 100 |
80/20 | 20 | 80 |
70/30 | 30 | 70 |
60/40 | 40 | 60 |
50/50 | 50 | 50 |
40/60 | 60 | 40 |
20/80 | 80 | 20 |
0/100 (LLDPE) | 100 | 0 |
Sample Name | Density, g/cm3 | MFI *, g/10 min | Mw, kg/mol | Mn, kg/mol | Mz, kg/mol | Mw/ Mn | Crystallinity,% | Tdb, °C |
---|---|---|---|---|---|---|---|---|
HDPE-1 | 0.948 | 0.2 | 250 | 13 | 980 | 19.0 | 67 | <−70 |
HDPE-2 | 0.949 | 0.35 | 210 | 12 | 930 | 17.5 | 68 | <−70 |
HDPE-3 | 0.948 | 0.5 | 180 | 11 | 820 | 16.0 | 67 | <−70 |
HDPE-4 | 0.950 | 1.1 | 160 | 11 | 725 | 14.5 | 69 | <−70 |
HDPE-5 | 0.948 | 1.6 | 150 | 13 | 695 | 11.5 | 67 | <−70 |
HDPE-6 | 0.947 | 2.0 | 140 | 16 | 670 | 8.8 | 65 | <−70 |
No. | Name | Type of PE * | ρ+23 **, g/cm3 | MFI5.0, g/10 min | Mw, kg/mol | Mw/ Mn | Content (Type) of Branches/ 1000 C (13C NMR) | Tmelt, °C | Crystallinity, % | XS ***, wt.% | Ɛb+23°C, % |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | LDPE | Homo- polymer C2 | 0.920 | 6.4 | 180 | 10.5 | 2.3 (Et), 8.3 (Bu); 3.1(Am); 3.7 **** | 109 | 36 | 5.5 | 960 |
2 | LLDPE-1 (bi-co-LLDPE) | Binary copolymer C2/C4 | 0.918 | 7.7 | 89 | 3.2 | 22.4 (Et) | 125 | 41 | 9.5 | 930 |
3 | LLDPE-2 (ter-co-LLDPE) | Ter-polymer C2/C4/C6 | 0.918 | 8.2 | 88 | 5.2 | 16.4 (Et)/4.5 (Bu) (ΣEt+Bu = 20.9) | 126 | 41 | 14.0 | 590 |
No. | HDPE/ LLDPE Weight Ratio | Density, g/cm3 | MFI 5 kg g/10 min | Mw, kg/mol | Mz, kg/mol | Mw/ Mn | CH3/ 1000 C *, (IR Spectroscopy Data) | Tm, °C | Crystallinity, % | XS, wt.% |
---|---|---|---|---|---|---|---|---|---|---|
1 | 100/0 | 0.950 | 1.1 | 160 | 725 | 14.5 | 5.2 | 135 | 69 | 1.4 |
2 | 80/20 | 0.945 | 2.3 | 145 | 650 | 13.0 | 9.4 | 134 | 63 | 3.6 |
3 | 70/30 | 0.942 | 2.5 | 135 | 610 | 10.6 | 10.9 | 132 | 60 | 4.1 |
4 | 60/40 | 0.940 | 3.2 | 130 | 560 | 9.3 | 12 | 130 | 58 | 4.5 |
5 | 50/50 | 0.936 | 3.9 | 129 | 510 | 8.2 | - | 129 | 53 | - |
6 | 40/60 | 0.933 | 4.7 | 110 | 460 | 7.3 | 17 | 129 | 49 | 6.9 |
7 | 20/80 | 0.928 | 6.0 | 100 | 380 | 5.9 | 22 | 128 | 45 | 9.7 |
8 | 0/100 | 0.918 | 8.2 | 88 | 270 | 5.2 | 26 | 126 | 41 | 14.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’ev, I.E. Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers 2021, 13, 1821. https://doi.org/10.3390/polym13111821
Salakhov II, Shaidullin NM, Chalykh AE, Matsko MA, Shapagin AV, Batyrshin AZ, Shandryuk GA, Nifant’ev IE. Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers. 2021; 13(11):1821. https://doi.org/10.3390/polym13111821
Chicago/Turabian StyleSalakhov, Ildar I., Nadim M. Shaidullin, Anatoly E. Chalykh, Mikhail A. Matsko, Alexey V. Shapagin, Ayrat Z. Batyrshin, Georgiy A. Shandryuk, and Ilya E. Nifant’ev. 2021. "Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends" Polymers 13, no. 11: 1821. https://doi.org/10.3390/polym13111821
APA StyleSalakhov, I. I., Shaidullin, N. M., Chalykh, A. E., Matsko, M. A., Shapagin, A. V., Batyrshin, A. Z., Shandryuk, G. A., & Nifant’ev, I. E. (2021). Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers, 13(11), 1821. https://doi.org/10.3390/polym13111821