Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions
<p>Schematic illustration of the strategy for host–guest-driven crosslinking of pCD-coated pNIPAm core (red)/AAc shell (blue) microgels into a 3D DX microgel network.</p> "> Figure 2
<p>Cryo-transmission electron microscopy (cryo-TEM) image of microgel/pCD complexes prepared using pCD excess (c(+)/c(−) = 2). The scale bar indicates 100 nm.</p> "> Figure 3
<p>Oscillatory rheological measurements of hydrogel samples with varying pCD coverage of the microgel particles. Storage G′ and loss G″ moduli obtained from frequency sweep performed at 0.1% strain for (<b>a</b>) <span class="html-italic">G2</span>; (<b>b</b>) <span class="html-italic">G3</span>; (<b>c</b>) Storage modulus G′ of <span class="html-italic">G2</span> and <span class="html-italic">G3</span> samples obtained from amplitude-strain sweep performed at <span class="html-italic">f</span> = 10 Hz. All measurements were performed at 25 °C.</p> "> Figure 4
<p>Evolution of storage G′ and loss G″ moduli of supramolecular gels under heating and cooling temperature ramps (temperature change rate = 2 °C/min, <math display="inline"><semantics> <mi>f</mi> </semantics></math> = 10 Hz, <span class="html-italic">γ</span> = 0.1%) for (<b>a</b>) <span class="html-italic">G3</span>; (<b>b</b>) <span class="html-italic">G5</span>; (<b>c</b>) <span class="html-italic">R3</span> hydrogel samples.</p> "> Figure 5
<p>Oscillatory rheological measurements of <span class="html-italic">G3</span> under temperature ramps (<span class="html-italic">f</span> = 10 Hz, <span class="html-italic">γ</span> = 0.1%).</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Microgel Synthesis
2.3. Cationic Poly(β-cyclodextrin) (pCD) Synthesis
2.4. Adamantane-Modified Guest Polymers
2.5. Preparation of βCD-Coated Microgel Particles
2.6. Supramolecular Hydrogel Preparation
2.7. Methods and Instrumentation
2.7.1. Rheology Measurements
2.7.2. Dynamic Light Scattering (DLS)
2.7.3. Electrophoretic Mobility
2.7.4. Cryo-Transmission Electron Microscopy (Cryo-TEM)
3. Results and Discussion
3.1. Preparation of Host-Molecule Functionalized Microgels
3.2. Hydrogel Formation
3.3. Influence of Host and Guest Polymer Characteristics on the Gel Formation
3.4. Thermoresponsive Behavior of the Supramolecular Gels
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011, 111, 4453–4474. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ladewig, K.; Fu, Q.; Blencowe, A.; Qiao, G.G. Cyclodextrin-Based Supramolecular Assemblies and Hydrogels: Recent Advances and Future Perspectives. Macromol. Rapid Commun. 2014, 35, 1166–1184. [Google Scholar] [CrossRef] [PubMed]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Chen, P.C.; Kohane, D.S.; Park, Y.J.; Bartlett, R.H.; Langer, R.; Yang, V.C. Injectable microparticle–gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. Part A 2004, 70, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Lynch, I.; de Gregorio, P.; Dawson, K. Simultaneous release of hydrophobic and cationic solutes from thin-film “plum-puddinG″ gels: A multifunctional platform for surface drug delivery? J. Phys. Chem. B 2005, 109, 6257–6261. [Google Scholar] [CrossRef] [PubMed]
- Richtering, W.; Saunders, B.R. Gel architectures and their complexity. Soft Matter 2014, 10, 3695–3702. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaran, D.; Maitland, D.; Oszustowicz, T.; Hoare, T. Tuning drug release from smart microgel–hydrogel composites via crosslinking. J. Colloid Interface Sci. 2013, 392, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Bencherif, S.A.; Siegwart, D.J.; Srinivasan, A.; Horkay, F.; Hollinger, J.O.; Washburn, N.R.; Matyjaszewski, K. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 2009, 30, 5270–5278. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Malik, M.S.; Farach-Carson, M.C.; Duncan, R.L.; Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 2010, 6, 5045–5055. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yeo, Y.; Clifton, R.J.; Jiao, T.; Kohane, D.S.; Kobler, J.B.; Zeitels, S.M.; Langer, R. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 2006, 7, 3336–3344. [Google Scholar] [CrossRef] [PubMed]
- Meid, J.; Dierkes, F.; Cui, J.; Messing, R.; Crosby, A.J.; Schmidt, A.; Richtering, W. Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels—From soft to hard fillers. Soft Matter 2012, 8, 4254–4263. [Google Scholar] [CrossRef]
- Xia, L.-W.; Xie, R.; Ju, X.-J.; Wang, W.; Chen, Q.; Chu, L.-Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4, 2226. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lu, X.; Gao, J.; Wang, C. Polymer gel nanoparticle networks. Adv. Mater. 2000, 12, 1173–1176. [Google Scholar] [CrossRef]
- Liu, R.; Milani, A.H.; Freemont, T.J.; Saunders, B.R. Doubly crosslinked pH-responsive microgels prepared by particle inter-penetration: Swelling and mechanical properties. Soft Matter 2011, 7, 4696–4704. [Google Scholar] [CrossRef]
- Milani, A.H.; Freemont, A.J.; Hoyland, J.A.; Adlam, D.J.; Saunders, B.R. Injectable doubly crosslinked microgels for improving the mechanical properties of degenerated intervertebral discs. Biomacromolecules 2012, 13, 2793–2801. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chen, G.; Liu, X.; Chen, W.; Chen, F.; Jiang, M. Photoresponsive pseudopolyrotaxane hydrogels based on competition of host–guest interactions. Angew. Chem. 2010, 122, 4511–4515. [Google Scholar] [CrossRef]
- Himmelein, S.; Lewe, V.; Stuart, M.C.; Ravoo, B.J. A carbohydrate-based hydrogel containing vesicles as responsive noncovalent crosslinkers. Chem. Sci. 2014, 5, 1054–1058. [Google Scholar] [CrossRef]
- Han, K.; Go, D.; Tigges, T.; Rahimi, K.; Kuehne, A.J.; Walther, A. Social Self-Sorting of Colloidal Families in Co-Assembling Microgel Systems. Angew. Chem. Int. Ed. 2017, 56, 2176–2182. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Go, D.; Hoenders, D.; Kuehne, A.J.; Walther, A. Switchable Supracolloidal Coassembly of Microgels Mediated by Host/Guest Interactions. ACS Macro Lett. 2017, 6, 310–314. [Google Scholar] [CrossRef]
- Kardos, A.; Varga, I. Core-shell pNIPAm microgels with unrestricted shell composition. Langmuir 2018. Submitted. [Google Scholar]
- Blomberg, E.; Kumpulainen, A.; David, C.; Amiel, C. Polymer bilayer formation due to specific interactions between beta-cyclodextrin and adamantane: A surface force study. Langmuir 2004, 20, 10449–10454. [Google Scholar] [CrossRef] [PubMed]
- Renard, E.; Deratani, A.; Volet, G.; Sebille, B. Preparation and characterization of water soluble high molecular weight beta-cyclodextrin-epichlorohydrin polymers. Eur. Polym. J. 1997, 33, 49–57. [Google Scholar] [CrossRef]
- El Fagui, A.; Wintgens, V.; Gaillet, C.; Dubot, P.; Amiel, C. Layer-by-Layer Coated PLA Nanoparticles with Oppositely Charged β-Cyclodextrin Polymer for Controlled Delivery of Lipophilic Molecules. Macromol. Chem. Phys. 2014, 215, 555–565. [Google Scholar] [CrossRef]
- Layre, A.-M.; Wintgens, V.; Gosselet, N.-M.; Dalmas, F.; Amiel, C. Tuning the interactions in cyclodextrin polymer nanoassemblies. Eur. Polym. J. 2009, 45, 3016–3026. [Google Scholar] [CrossRef]
- Layre, A.-M.; Volet, G.; Wintgens, V.; Amiel, C. Associative Network Based on Cyclodextrin Polymer: A Model System for Drug Delivery. Biomacromolecules 2009, 10, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
- Senff, H.; Richtering, W. Influence of crosslink density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym. Sci. 2000, 278, 830–840. [Google Scholar] [CrossRef]
- Senff, H.; Richtering, W. Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 1999, 111, 1705–1711. [Google Scholar] [CrossRef]
- Varga, I.; Gilányi, T.; Mészáros, R.; Filipcsei, G.; Zrínyi, M. Effect of Cross-Link Density on the Internal Structure of Poly(N-isopropylacrylamide) Microgels. J. Phys. Chem. B 2001, 105, 9071–9076. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Yang, Y.; Wu, C. Rheological study of the sol-gel transition of hybrid gels. Macromolecules 2003, 36, 855–859. [Google Scholar] [CrossRef]
- Charbonneau, C.; Chassenieux, C.; Colombani, O.; Nicolai, T. Controlling the dynamics of self-assembled triblock copolymer networks via the pH. Macromolecules 2011, 44, 4487–4495. [Google Scholar] [CrossRef]
- Charlot, A.; Auzely-Velty, R.; Rinaudo, M. Specific interactions in model charged polysaccharide systems. J. Phys. Chem. B 2003, 107, 8248–8254. [Google Scholar] [CrossRef]
- Wintgens, V.; Daoud-Mahammed, S.; Gref, R.; Bouteiller, L.; Amiel, C. Aqueous polysaccharide associations mediated by β-cyclodextrin polymers. Biomacromolecules 2008, 9, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud’homme, R.K.; May, B.L.; Lincoln, S.F. Polymer networks assembled by host−guest inclusion between adamantyl and β-cyclodextrin substituents on poly(acrylic acid) in aqueous solution. Macromolecules 2008, 41, 8677–8681. [Google Scholar] [CrossRef]
- Van de Manakker, F.; Vermonden, T.; el Morabit, N.; van Nostrum, C.F.; Hennink, W.E. Rheological behavior of self-assembling PEG-β-cyclodextrin/PEG-cholesterol hydrogels. Langmuir 2008, 24, 12559–12567. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, G.; Guo, M.; Jiang, M. Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC). Macromolecules 2010, 43, 8086–8093. [Google Scholar] [CrossRef]
- Cates, M. Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 1987, 20, 2289–2296. [Google Scholar] [CrossRef]
- Vermonden, T.; van Steenbergen, M.J.; Besseling, N.A.; Marcelis, A.T.; Hennink, W.E.; Sudhölter, E.J.; Cohen Stuart, M.A. Linear rheology of water-soluble reversible neodymium (III) coordination polymers. J. Am. Chem. Soc. 2004, 126, 15802–15808. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, E.J.; Varga, I.; Claesson, P.M.; Yun, S.-H.; Song, C. Terpyridine-functionalized stimuli-responsive microgels and their assembly through metal-ligand interactions. Polym. Chem. 2018, 9, 1032–1039. [Google Scholar] [CrossRef]
- Tanaka, T.; Sato, E.; Hirokawa, Y.; Hirotsu, S.; Peetermans, J. Critical kinetics of volume phase transition of gels. Phys. Rev. Lett. 1985, 55, 2455. [Google Scholar] [CrossRef] [PubMed]
Microgel (MG) | cAAc in cMG | dh (nm) (pH 7, 25 °C) | ||
pNIPAm-shell-100%pAAc | 1 mM in 0.40 g·L−1 | 450 | ||
Host polymers | cN+ in cpCD | Mw (kDa) | cCD (wt %) | nN+/nCD |
pCD(1.6N+) | 1 mM in 1.20 g·L−1 | 238 | 58.2 | 1.62 |
pCD(3.2N+) | 1 mM in 0.68 g·L−1 | 268 | 51.8 | 3.24 |
Guest polymers | cAda in cDexAda | Mw (kDa) | cAda (mol %) | |
Dex115-Ada5 | 1 mM in 3.68 g·L−1 | 115 | 4.7 | |
Dex500-Ada6 | 1 mM in 2.66 g·L−1 | 533 | 6.5 |
Sample Code | Components | c(+)/c(−) | nAda/nCD | cMG (wt %) | cpCD (wt %) | cDex-Ada (wt %) | ctot (wt %) | Observation |
---|---|---|---|---|---|---|---|---|
G1 | MG/pCD(1.6N+)/Dex110Ada5 | 0.8 | 1.25 | 0.6 | 1.4 | 3.4 | 5.4 | phase separation |
G2 | MG/pCD(1.6N+)/Dex110Ada5 | 1.5 | 1.25 | 0.6 | 2.6 | 6.3 | 9.4 | viscous liquid |
G3 | MG/pCD(1.6N+)/Dex110Ada5 | 2.0 | 1.25 | 0.5 | 3.3 | 8.1 | 11.9 | gel |
R1 | MG | - | - | 10.1 | 0 | 0 | 10.1 | liquid |
R2 | MG/pCD(1.6N+) | 2.0 | - | 1.5 | 9.0 | 0 | 10.5 | phase separation |
G4 | MG/pCD(3.2N+)/Dex110Ada5 | 2.0 | 1.0 | 1.5 | 5.0 | 8.4 | 14.9 | liquid |
G5 | MG/pCD(3.2N+)/Dex500Ada6 | 2.0 | 1.0 | 1.3 | 4.4 | 5.3 | 11.0 | gel |
R3 | pCD(3.2N+)/Dex500Ada6 | - | 1.0 | 0 | 4.3 | 5.2 | 9.5 | gel |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniuk, I.; Kaczmarek, D.; Kardos, A.; Varga, I.; Amiel, C. Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions. Polymers 2018, 10, 566. https://doi.org/10.3390/polym10060566
Antoniuk I, Kaczmarek D, Kardos A, Varga I, Amiel C. Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions. Polymers. 2018; 10(6):566. https://doi.org/10.3390/polym10060566
Chicago/Turabian StyleAntoniuk, Iurii, Daria Kaczmarek, Attila Kardos, Imre Varga, and Catherine Amiel. 2018. "Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions" Polymers 10, no. 6: 566. https://doi.org/10.3390/polym10060566
APA StyleAntoniuk, I., Kaczmarek, D., Kardos, A., Varga, I., & Amiel, C. (2018). Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions. Polymers, 10(6), 566. https://doi.org/10.3390/polym10060566