On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination
"> Figure 1
<p>Scheme of the envisioned four steps of the desalination process, where (1) is swelling of the hydrogel in an excess of brine solution with concentration <math display="inline"><semantics> <msub> <mi>C</mi> <mi>S</mi> </msub> </semantics></math> at which the mobile ions of the brine solution are partly rejected from the hydrogel (<span class="html-italic">left</span>), (2) removal of the excess brine solution, (3) dewatering of the hydrogel by means of a thermal energy source, the water is released from the hydrogel due to the phase separation of PNIPAAm above its LCST (<span class="html-italic">down</span>), (4) collection of salt depleted water with brine concentration less than initial one ( <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>S</mi> </msub> <mspace width="0.166667em"/> <mo><</mo> <mspace width="0.166667em"/> <msub> <mi>C</mi> <mn>0</mn> </msub> </mrow> </semantics></math> ).</p> "> Figure 2
<p>SEM images of the freeze-dried hydrogels with scale bars of 5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> "> Figure 3
<p>Equilibrium swelling ratios (<math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math>) of the hydrogels in deionised water (DI) (<span class="html-italic">closed symbols</span>) and in salt solution (2 g L<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> NaCl) (<span class="html-italic">open symbols</span>) as a function of the PAAc content at room temperature (∼23 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C). The dashed lines are just a guide for the eye while the straight ones are linear fits.</p> "> Figure 4
<p>Plots of half-swelling time (<math display="inline"><semantics> <msub> <mi>t</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>) as a function of the PAAc content. The dynamic study was evaluated in deionised water (DI) at room temperature (∼23 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C). The shape and size of the cylindric hydrogel samples were constant ( 5 mm in diameter and 2 mm in thickness).</p> "> Figure 5
<p>Storage modulus (<math display="inline"><semantics> <msup> <mi>G</mi> <mrow> <mspace width="0.166667em"/> <mo>′</mo> </mrow> </msup> </semantics></math>) and loss tangent (tan<math display="inline"><semantics> <mi>δ</mi> </semantics></math>) as a function of grafted PAAc content of the fully swollen hydrogels.</p> "> Figure 6
<p>Storage modulus (<math display="inline"><semantics> <msup> <mi>G</mi> <mrow> <mspace width="0.166667em"/> <mo>′</mo> </mrow> </msup> </semantics></math>) as a function of the equilibrium swelling ratio of gels with different fraction of PAAc and different comb-chain lengths.</p> "> Figure 7
<p>Correlation of the mesh size estimated from rheological data with the PAAc content of hydrogels in deionised water (DI).</p> "> Figure 8
<p>DSC thermograms of the fully swollen hydrogels from which the freezable water content was determined; water as reference.</p> "> Figure 9
<p>Freezable water content estimated from the DSC thermograms for the studied hydrogels as a function of grafted PAAc content (<span class="html-italic">bars mode</span>) and swelling ratio at equilibrium (<span class="html-italic">markers mode</span>).</p> "> Figure 10
<p>Equilibrium swelling ratio (<math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math>) of hydrogels as a function of temperature in deionised water. The lines are fit of a sigmoid function to the raw data.</p> "> Figure 11
<p>Photographs represent the steps of the desalination process using powder gel materials, where (<b>a</b>) is the gel in dry state; (<b>b</b>) swelling of the gel in excess salt water; (<b>c</b>) removal of the excess solution; (<b>d</b>) dewatering of the gel by thermal heating for 60 min at 50 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C; (<b>e</b>) collection of the recovered water.</p> "> Figure 12
<p>Percentage of recovered liquid water from fully swollen gels (powder form) in both deionised water (DI) and salt solution (2 g L<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> NaCl) after 60 min dewatering process at 50 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C.</p> "> Figure 13
<p>Salt rejection upon swelling/dewatering process of hydrogels in powder form with 2 g L<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> NaCl as feed saline water in one cycle.</p> "> Figure 14
<p>The competition between hydrophilic and hydrophobic balance on the performance of hydrogels in the proposed desalination process. The salt rejection increases as the water recovery decreases. Gel samples in powder form were swollen in excess salt solution of 2 g L<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> NaCl from the dry state and shrunk throughout 60 min at 50 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C. The straight lines are linear fits to the data.</p> "> Figure 15
<p>Overview of the performance of hydrogels in terms of desalinated water recovery and salt rejection as a function of grafted PAAc content. The straight lines are linear fits.</p> "> Figure 16
<p>Total number of steps required to achieve a complete salt rejection (<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>R</mi> </mrow> </semantics></math>) using GG10k–30 hydrogel. The straight line is a guide for the eye.</p> "> Figure 17
<p>The influence of the salt concentration in the feed solution on the salt rejection, using a GG10k–30 hydrogel. The straight lines are linear and exponential fits to the data in the regime 1 and 2, respectively.</p> "> Figure 18
<p>Swelling/dewatering cycles of GG10K–20 gel (powder form) in response to temperature changes for 2 h cycles between 20 and 50 <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C in brine solution of 2 g L<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> NaCl, and the corresponding salt rejection for each cycle.</p> "> Scheme 1
<p>Synthesis of the PNIPAAm-g-PAAc hydrogel network.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrogels
2.2.1. Synthesis of the Poly(acrylic acid)macromolecular RAFT Agents (PAAc-TTC)
2.2.2. Synthesis of Comb-Type Grafted PNIPAAm-g-PAAc Networks
2.3. Characterisation and Measurements
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.4. Differential Scanning Calorimetry (DSC)
2.3.5. Swelling Ratio and Kinetics of Swelling
2.3.6. Determination of Water Recovery and Salt Rejection
2.3.7. Rheological Measurement
2.3.8. Mesh Size Calculation of Hydrogels
3. Results and Discussion
3.1. Synthesis of Hydrogels
3.2. Characterisation of Hydrogels
3.2.1. Swelling Properties
3.2.2. Rheological Investigation and Network Structure
3.3. Dewatering Behaviour of Hydrogels and Salt Rejection
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Buchholz, F.L.; Graham, A.T. (Eds.) Modern Superabsorbent Polymer Technology, 1st ed.; Wiley-VCH: New York, NY, USA, 1998. [Google Scholar]
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Dusek, K. (Ed.) Responsive Gels: Volume Transitions 1 (Advances in Polymer Science), 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 109. [Google Scholar]
- Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M. Composites of functional polymeric hydrogels and porous membranes. J. Mater. Chem. 2011, 21, 2783–2811. [Google Scholar] [CrossRef]
- Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 2012, 37, 1678–1719. [Google Scholar] [CrossRef]
- Kosik, K.; Wilk, E.; Geissler, E.; László, K. Influence of a Crown Ether Comonomer on the Temperature- Induced Phase Transition of Poly(N-isopropylacrylamide) Hydrogels. J. Phys. Chem. B 2008, 112, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Flory, P.J. Principles of Polymer Chemistry, 1st ed.; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Höpfner, J.; Klein, C.; Wilhelm, M. A Novel Approach for the Desalination of Seawater by Means of Reusable Poly(acrylic acid) Hydrogels and Mechanical Force. Macromol. Rapid Commun. 2010, 31, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Höpfner, J.; Richter, T.; Košovan, P.; Holm, C.; Wilhelm, M. Seawater Desalination via Hydrogels: Practical Realisation and First Coarse Grained Simulations. In Intelligent Hydrogels; Sadowski, G., Richtering, W., Eds.; Progress in Colloid and Polymer Science; Springer International Publishing: Cham, Switzerland, 2013; Volume 140, pp. 247–263. [Google Scholar]
- Schild, G.H. Poly(N-isopropylacrylamide): Experiment, Theory, and Application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Flory, J.P.; Rehner, J. Statistical Mechanism of Cross-linked Polymer Networks. I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.T. Smart draw agents for emerging forward osmosis application. J. Mater. Chem. A 2013, 45, 14049–14060. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X.M. Exploration of using thermally responsive polyionic liquid hydrogels as draw agents in forward osmosis. RSC Adv. 2015, 118, 97143–97150. [Google Scholar] [CrossRef]
- Fänger, C.; Wack, H.; Ulbricht, M. Macroporous Poly(N-isopropylacrylamide) Hydrogels with Adjustable Size Cut-off for the Efficient and Reversible Immobilization of Biomacromolecules. Macromol. Biosci. 2006, 6, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Righetti, P.G.; Gelfi, C. Electrophoresis Gel Media: The State of the Art. J. Chromatogr. B 1997, 699, 63–75. [Google Scholar] [CrossRef]
- Marchetti, M.; Cussler, E.L. Hydrogels as Ultrafiltration Devices. Sep. Purif. Methods 1989, 18, 177–192. [Google Scholar] [CrossRef]
- Cussler, E.L.; Stokar, M.R.; Varberg, J.E. Gels as Size Selective Extraction Solvents. AlChE J. 1984, 30, 578–582. [Google Scholar] [CrossRef]
- Freitas, R.F.S.; Cussler, E.L. Temperature Sensitive Gels as Extraction Solvents. Chem. Eng. Sci. 1987, 42, 97–103. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK; San Diego, CA, USA, 2011. [Google Scholar]
- Ali, W.; Gebert, B.; Hennecke, T.; Graf, K.; Ulbricht, M.; Gutmann, J.S. Design of Thermally Responsive Polymeric Hydrogels for Brackish Water Desalination: Effect of Architecture on Swelling, Deswelling, and Salt Rejection. ACS Appl. Mater. Interfaces 2015, 7, 15696–15706. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.F.; Zhang, P.; Lu, M.G. Synthesis and swelling behavior of comb-type grafted hydrogels by reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 2615–2624. [Google Scholar] [CrossRef]
- Liu, Q.F.; Zhang, P.; Qing, A.X.; Lan, Y.X.; Lu, M.G. Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer 2006, 47, 2330–2336. [Google Scholar] [CrossRef]
- Velasquez, E.; Pembouong, G.; Rieger, J.; Stoffelbach, F.; Boyron, O.; Charleux, B.; D’Agosto, F.; Lansalot, M.; Dufils, P.E.; Vinas, J. Poly(vinylidene chloride)-Based Amphiphilic Block Copolymers. Macromolecules 2013, 46, 664–673. [Google Scholar] [CrossRef]
- Mansor, B.A.; Huglin, M.B. DSC studies on states of water in crosslinked poly(methyl methacrylate-co-n-vinyl-2-pyrrolidone) hydrogels. Polym. Int. 1994, 33, 273–277. [Google Scholar]
- Canal, T.; Peppas, N.A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 1989, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ugaz, V.M. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis. Electrophoresis 2006, 27, 3349–3358. [Google Scholar] [CrossRef] [PubMed]
- Perrier, S.; Barner-Kowollik, C.; Quinn, J.F.; Vana, P.; Davis, T.P. Origin of Inhibition Effects in the Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate. Macromolecules 2002, 35, 8300–8306. [Google Scholar] [CrossRef]
- Chen, G.; Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995, 373, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Tabata, Y.; Ikada, Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999, 20, 1339–1344. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Yang, Y.Y.; Chung, T.S. The Influence of Cold Treatment on Properties of Temperature-Sensitive Poly(N-isopropylacrylamide) Hydrogels. J. Colloid Interface Sci. 2002, 246, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. 2002, 43, 3–12. [Google Scholar] [CrossRef]
- Donnan, F.G.; Guggenheim, E.A. Exact thermodynamics of membrane equilibrium. Z. Phys. Chem. 1932, A162, 346–360. [Google Scholar]
Expt. | Macro-RAFT Agent | (mol L) | Time (min) | Conv. (mol %) | (g mol) | (g mol) | |
---|---|---|---|---|---|---|---|
E 1 | PAAc3K | 1.50 | 90 | 80 | 45.5 | 3320 | 3560 |
E 2 | PAAc5K | 2.07 | 130 | 80 | 48.8 | 4930 | 5071 |
E 3 | PAAc10K | 3.33 | 233 | 80 | 56.4 | 9830 | 10551 |
Expt. | Gel Code | PAAc-TTC (wt %) | NIPAAm (wt %) | NIPAAm Conv. (wt %) | PAAc-TTC Content (wt %) |
---|---|---|---|---|---|
G1 | GG3K–20 | 20 | 80 | 98.4 | 20.3 |
G2 | GG3K–30 | 30 | 70 | 96.2 | 31.1 |
G3 | GG3K–40 | 40 | 60 | 94.7 | 42.2 |
G4 | GG3K–50 | 50 | 50 | – | – |
G5 | GG5K–20 | 20 | 80 | 98.0 | 20.4 |
G6 | GG5K–30 | 30 | 70 | 97.2 | 30.8 |
G7 | GG5K–40 | 40 | 60 | 93.5 | 42.6 |
G8 | GG5K–50 | 50 | 50 | – | – |
G9 | GG10K–20 | 20 | 80 | 96.8 | 20.6 |
G10 | GG10K–30 | 30 | 70 | 95.1 | 31.5 |
G11 | GG10K–40 | 40 | 60 | 93.4 | 42.6 |
G12 | GG10K–50 | 50 | 50 | – | – |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, W.; Gebert, B.; Altinpinar, S.; Mayer-Gall, T.; Ulbricht, M.; Gutmann, J.S.; Graf, K. On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination. Polymers 2018, 10, 567. https://doi.org/10.3390/polym10060567
Ali W, Gebert B, Altinpinar S, Mayer-Gall T, Ulbricht M, Gutmann JS, Graf K. On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination. Polymers. 2018; 10(6):567. https://doi.org/10.3390/polym10060567
Chicago/Turabian StyleAli, Wael, Beate Gebert, Sedakat Altinpinar, Thomas Mayer-Gall, Mathias Ulbricht, Jochen S. Gutmann, and Karlheinz Graf. 2018. "On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination" Polymers 10, no. 6: 567. https://doi.org/10.3390/polym10060567
APA StyleAli, W., Gebert, B., Altinpinar, S., Mayer-Gall, T., Ulbricht, M., Gutmann, J. S., & Graf, K. (2018). On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination. Polymers, 10(6), 567. https://doi.org/10.3390/polym10060567