An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem
<p>The flow-shop scheduling problem.</p> "> Figure 2
<p>The probability of each algorithm being the best in instances of size 20.</p> "> Figure 3
<p>The probability of each algorithm being the best in instances of size 50.</p> "> Figure 4
<p>The probability of each algorithm being the best in instances of size 100.</p> "> Figure 5
<p>The probability of each algorithm being the best in all instances.</p> "> Figure 6
<p>The probability of each algorithm being in the top two and top three in all instances of size 20, 50, and 100.</p> ">
Abstract
:1. Introduction
2. Problem Definition
2.1. Estimation of Distribution Algorithms
Algorithm 1: The general pseudo code of EDAs |
2.2. Permutation Flow-Shop Scheduling Problem (PFSP)
- All tasks start processing at time zero.
- Machines operate continuously without interruptions.
- Tasks must follow a predetermined processing sequence.
- Each machine can process only one task at a time, and vice versa.
- When : This corresponds to the first job being scheduled on the first machine. In this case, the completion time is simply the processing time .
- When and : This represents a job being scheduled on the first machine, but it is not the first job overall. The completion time is the sum of the processing time for the current job and the completion time of the previous job on the same machine .
- When and : This corresponds to the first job being scheduled on a machine other than the first one. The completion time is the sum of the processing time for the current job and the completion time of the previous job on the same machine .
- When and : This represents a job being scheduled on a machine other than the first one, and it is not the first job overall. The completion time is the sum of the processing time for the current job and the maximum value between the completion time of the previous job on the same machine and the completion time of the current job on the previous machine .
Algorithm 2: Makespan Computing Algorithm |
3. The Proposed PGS-EDA Algorithm
Algorithm 3: A pseudo code of PGS-EDA |
3.1. Individuals Representation and Initialization
3.2. Modeling
3.3. Sampling
Algorithm 4: The sampling algorithm |
- Input: The algorithm takes two inputs, Matrix model M: This represents a matrix containing some information or values. Sequence vector : This is a vector containing a sequence of elements.
- Initializing the offspring: The algorithm initializes the offspring variable , which represents the new offspring. Initially, it is empty or contains default values.
- Iterating over the sequence vector: The algorithm iterates over each element e in the sequence vector .
- Computing the probability vector: For each element e, the algorithm computes the probability vector by normalizing the corresponding row of the matrix model M. This step ensures that the values in sum up to 1 and represent a valid probability distribution.
- Sampling a position: The algorithm samples a position p from the probability vector . This step uses a roulette wheel to select an index from based on the probabilities associated with each index.
- Assigning the element to the offspring: The algorithm assigns the value of e to the position p in the offspring . This step determines where the element e will be placed in the offspring based on the sampled position.
- Updating the matrix model: The algorithm sets the value at position p in the matrix model M to 0. This step ensures that the same position will not be selected again in future iterations, as the corresponding probability will be 0.
- Repeat the process: The algorithm continues iterating over the remaining elements in the sequence vector and performs steps 4 to 7 for each element.
- Output: Once the iteration is complete, the algorithm returns the resulting offspring , which contains the elements from the sequence vector arranged based on the sampled positions.
3.4. Replacement Strategy
4. Experiments and Results
4.1. Experiments
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mühlenbein, H.; Paaß, G. From recombination of genes to the estimation of distributions I. Binary parameters. In Parallel Problem Solving from Nature, Proceedings of the PPSN IV, Berlin, Germany, 22–26 September 1996; Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 178–187. [Google Scholar]
- Hauschild, M.; Pelikan, M. An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 2011, 1, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, S. Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram. In Parallel Problem Solving from Nature, Proceedings of the PPSN VII, Granada, Spain, 7–11 September 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 224–233. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Lemtenneche, S.; Cheriet, A.; Abdellah, B. Permutation-Based Optimization Using a Generative Adversarial Network. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21, Lille, France, 10–14 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 159–160. [Google Scholar] [CrossRef]
- Cheriet, A. Vine copula-based EDA for dynamic multiobjective optimization. Evol. Intell. 2022, 15, 455–479. [Google Scholar] [CrossRef]
- Ayodele, M.; Mccall, J.; Regnier-Coudert, O. RK-EDA: A Novel Random Key Based Estimation of Distribution Algorithm. In Parallel Problem Solving from Nature, Proceedings of the PPSN XIV, Edinburgh, UK, 17–21 September 2016; Springer: Boston, MA, USA, 2016; Volume 9921, pp. 849–858. [Google Scholar] [CrossRef]
- Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 2012, 1, 103–117. [Google Scholar] [CrossRef]
- Tsutsui, S. Node Histogram vs. Edge Histogram: A Comparison of Probabilistic Model-Building Genetic Algorithms in Permutation Domains. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1939–1946. [Google Scholar] [CrossRef]
- Ceberio, J.; Irurozqui, E.; Mendiburu, A.; Lozano, J. A Distance-Based Ranking Model Estimation of Distribution Algorithm for the Flowshop Scheduling Problem. IEEE Trans. Evol. Comput. 2013, 18, 286–300. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Lingle, R. Alleles, loci, and the traveling salesman problem. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, 24–26 July 1985; pp. 154–159. [Google Scholar]
- Koopmans, T.C.; Beckmann, M. Assignment problems and the location of economic activities. Econom. J. Econom. Soc. 1957, 25, 53–76. [Google Scholar] [CrossRef]
- Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68. [Google Scholar] [CrossRef]
- Bosman, P.A.N.; Thierens, D. Crossing the road to efficient IDEAs for permutation problems. In Proceedings of the 2001 Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, CA, USA, 7–11 July 2001; pp. 219–226. [Google Scholar]
- Lozano, J.A.; Mendiburu, A. Estimation of Distribution Algorithms Applied to the Job Shop Scheduling Problem: Some Preliminary Research. In Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Larrañaga, P., Lozano, J.A., Eds.; Springer: Boston, MA, USA, 2002; pp. 231–242. [Google Scholar] [CrossRef]
- Ceberio, J.; Mendiburu, A.; Lozano, J. Introducing the Mallows Model on Estimation of Distribution Algorithms. In Neural Information Processing, Proceedings of the ICONIP 2011, Shanghai, China, 13–17 November 2011; Springer: Boston, MA, USA, 2011; Volume 7063, pp. 461–470. [Google Scholar] [CrossRef]
- Ceberio, J.; Mendiburu, A.; Lozano, J. Kernels of Mallows Models for Solving Permutation-based Problems. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; pp. 505–512. [Google Scholar] [CrossRef]
- Ceberio, J.; Mendiburu, A.; Lozano, J.A. The Plackett-Luce ranking model on permutation-based optimization problems. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 494–501. [Google Scholar]
- Ayodele, M.; McCall, J.; Regnier-Coudert, O.; Bowie, L. A Random Key based Estimation of Distribution Algorithm for the Permutation Flowshop Scheduling Problem. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 2364–2371. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, F.; Wang, L.; Cao, J.; Tang, J.; Jonrinaldi. An estimation of distribution algorithm with multiple intensification strategies for two-stage hybrid flow-shop scheduling problem with sequence-dependent setup time. Appl. Intell. 2023, 53, 5160–5178. [Google Scholar] [CrossRef]
- Sun, L.; Shi, W.; Wang, J.; Mao, H.; Tu, J.; Wang, L. Research on Production Scheduling Technology in Knitting Workshop Based on Improved Genetic Algorithm. Appl. Sci. 2023, 13, 5701. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, X.; Ji, G. Permutation Flow Shop Scheduling Optimization Method Based on Cooperative Games. IEEE Access 2023, 11, 47377–47389. [Google Scholar] [CrossRef]
- Khurshid, B.; Maqsood, S.; Omair, M.; Sarkar, B.; Ahmad, I.; Muhammad, K. An Improved Evolution Strategy Hybridization With Simulated Annealing for Permutation Flow Shop Scheduling Problems. IEEE Access 2021, 9, 94505–94522. [Google Scholar] [CrossRef]
- Brown, A.; Lomnicki, Z. Some applications of the “branch-and-bound” algorithm to the machine scheduling problem. J. Oper. Res. Soc. 1966, 17, 173–186. [Google Scholar] [CrossRef]
- Lomnicki, Z. A “branch-and-bound” algorithm for the exact solution of the three-machine scheduling problem. J. Oper. Res. Soc. 1965, 16, 89–100. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Koulamas, C. A new constructive heuristic for the flowshop scheduling problem. Eur. J. Oper. Res. 1998, 105, 66–71. [Google Scholar] [CrossRef]
- Semanco, P.; Modrak, V. A comparison of constructive heuristics with the objective of minimizing makespan in the flow-shop scheduling problem. Acta Polytech. Hung. 2012, 9, 177–190. [Google Scholar]
- Kizilay, D.; Tasgetiren, M.F.; Pan, Q.K.; Gao, L. A Variable Block Insertion Heuristic for Solving Permutation Flow Shop Scheduling Problem with Makespan Criterion. Algorithms 2019, 12, 100. [Google Scholar] [CrossRef] [Green Version]
- Caraffa, V.; Ianes, S.; Bagchi, T.P.; Sriskandarajah, C. Minimizing makespan in a blocking flowshop using genetic algorithms. Int. J. Prod. Econ. 2001, 70, 101–115. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J. A Simple and Effective Approach for Tackling the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [Google Scholar] [CrossRef]
- Osman, I.H.; Potts, C. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, R. A Hybrid Estimation of Distribution Algorithm for the Quay Crane Scheduling Problem. Math. Comput. Appl. 2021, 26, 64. [Google Scholar] [CrossRef]
- Tasgetiren, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G. A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 2007, 177, 1930–1947. [Google Scholar] [CrossRef]
- Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem. Systems 2023, 11, 221. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Şenol, M.E. Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem. Comput. Sci. Math. Forum 2022, 2, 10. [Google Scholar] [CrossRef]
- Larranaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer Sciencc+Business Media: New York, NY, USA, 2002; p. 398. [Google Scholar] [CrossRef] [Green Version]
- Pelikan, M.; Goldberg, D.E.; Lobo, F.G. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 2002, 21, 5–20. [Google Scholar] [CrossRef]
- Huang, J.; Guestrin, C.; Guibas, L. Fourier Theoretic Probabilistic Inference over Permutations. J. Mach. Learn. Res. 2009, 10, 997–1070. [Google Scholar]
- Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; Mathematical Sciences Series; W. H. Freeman: New York, NY, USA, 1979. [Google Scholar]
- Chandramouli, A.B. Heuristic Approach for N-Job, 3-Machine Flow Shop Scheduling Problem Involving Transportation Time, Break Down Time and Weights of Jobs. Math. Comput. Appl. 2005, 10, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Foumani, M.; Razeghi, A.; Smith-Miles, K. Stochastic optimization of two-machine flow shop robotic cells with controllable inspection times: From theory toward practice. Robot. Comput.-Integr. Manuf. 2020, 61, 101822. [Google Scholar] [CrossRef]
- Jarboui, B.; Eddaly, M.; Siarry, P. An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Comput. Oper. Res. 2009, 36, 2638–2646. [Google Scholar] [CrossRef]
- Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [Google Scholar] [CrossRef]
- Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A Review of Distances for the Mallows and Generalized Mallows Estimation of Distribution Algorithms. Comput. Optim. Appl. 2015, 62, 545–564. [Google Scholar] [CrossRef]
- Irurozki, E.; Ceberio, J.; Santamaria, J.; Santana, R.; Mendiburu, A. Algorithm 989: Perm mateda: A Matlab Toolbox of Estimation of Distribution Algorithms for Permutation-Based Combinatorial Optimization Problems. ACM Trans. Math. Softw. 2018, 44, 1–13. [Google Scholar] [CrossRef]
- Rojas-Delgado, J.; Ceberio, J.; Calvo, B.; Lozano, J.A. Bayesian Performance Analysis for Algorithm Ranking Comparison. IEEE Trans. Evol. Comput. 2022, 26, 1281–1292. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Population size | |
Selection size | n |
Max number of generation | |
Stopping criterion | FEs |
Number of runs | 10 |
Instance | PGS-EDA | UMDA | RK-EDA | GM-EDA | NHBSA | EHBSA |
---|---|---|---|---|---|---|
20×5_1 | 1.486 | 1.502 | 0.310 | 0.000 | 1.486 | 1.267 |
20×5_2 | 0.250 | 1.530 | 0.470 | 0.412 | 0.423 | 0.4415 |
20×5_3 | 1.267 | 3.5426 | 0.832 | 1.378 | 1.794 | 3.977 |
20×5_4 | 0.959 | 1.297 | 1.067 | 0.765 | 0.699 | 2.088 |
20×5_5 | 1.116 | 1.262 | 0.800 | 0.622 | 1.116 | 1.197 |
20×10_1 | 0.982 | 2.863 | 2.243 | 1.245 | 1.150 | 3.893 |
20×10_2 | 1.048 | 3.640 | 1.952 | 1.326 | 1.115 | 4.110 |
20×10_3 | 1.537 | 5.404 | 2.152 | 1.684 | 1.744 | 5.41 |
20×10_4 | 1.328 | 2.818 | 1.494 | 1.291 | 1.531 | 4.208 |
20×10_5 | 1.279 | 4.756 | 1.458 | 1.797 | 1.747 | 5.454 |
20×20_1 | 0.959 | 3.854 | 2.137 | 1.684 | 1.406 | 2.873 |
20×20_2 | 1.083 | 3.352 | 1.623 | 1.666 | 1.471 | 3.200 |
20×20_3 | 0.741 | 2.665 | 1.874 | 1.818 | 1.216 | 3.723 |
20×20_4 | 0.890 | 2.744 | 1.363 | 1.529 | 1.174 | 3.193 |
20×20_5 | 0.816 | 2.385 | 1.379 | 1.580 | 1.322 | 3.963 |
Mean | 1.097 | 2.907 | 1.410 | 1.253 | 2.984 | 3.260 |
Instance | PGS-EDA | UMDA | RK-EDA | GM-EDA | NHBSA | EHBSA |
---|---|---|---|---|---|---|
50×5_1 | 0.000 | 0.220 | 0.0954 | 0.359 | 0.055 | 1.189 |
50×5_2 | 0.656 | 2.183 | 0.197 | 0.688 | 0.366 | 2.194 |
50×5_3 | 0.347 | 0.763 | 0.148 | 0.209 | 0.076 | 1.900 |
50×5_4 | 0.308 | 1.768 | 0.843 | 0.654 | 0.367 | 2.988 |
50×5_5 | 0.034 | 0.838 | 0.034 | 0.034 | 0.034 | 1.847 |
50×10_1 | 2.466 | 3.295 | 3.246 | 1.355 | 3.365 | 8.710 |
50×10_2 | 1.943 | 3.613 | 1.894 | 1.804 | 3.692 | 9.576 |
50×10_3 | 2.263 | 3.690 | 1.662 | 1.710 | 3.509 | 10.391 |
50×10_4 | 1.109 | 3.253 | 1.354 | 1.174 | 1.409 | 9.839 |
50×10_5 | 1.781 | 4.377 | 1.791 | 1.791 | 2.106 | 10.521 |
50×20_1 | 1.762 | 3.669 | 1.809 | 2.918 | 3.788 | 10.699 |
50×20_2 | 2.566 | 5.289 | 3.343 | 4.209 | 4.411 | 11.551 |
50×20_3 | 2.390 | 4.929 | 3.189 | 3.966 | 5.697 | 12.108 |
50×20_4 | 1.820 | 3.587 | 1.755 | 2.494 | 3.336 | 10.621 |
50×20_5 | 2.417 | 4.709 | 1.756 | 2.825 | 2.486 | 9.982 |
Mean | 1.456 | 3.078 | 1.539 | 1.754 | 2.213 | 7.607 |
Instance | PGS-EDA | UMDA | RK-EDA | GM-EDA | NHBSA | EHBSA |
---|---|---|---|---|---|---|
100×5_1 | 0.032 | 0.190 | 0.014 | 0.032 | 0.028 | 0.709 |
100×5_2 | 0.288 | 0.598 | 0.398 | 0.335 | 0.360 | 1.319 |
100×5_3 | 0.206 | 1.023 | 0.102 | 0.372 | 0.502 | 2.035 |
100×5_4 | 0.165 | 0.597 | 0.155 | 0.241 | 0.197 | 1.804 |
100×5_5 | 0.059 | 0.604 | 0.057 | 0.085 | 0.047 | 2.066 |
100×10_1 | 1.018 | 4.523 | 0.519 | 1.019 | 1.057 | 7.383 |
100×10_2 | 1.009 | 3.047 | 0.736 | 0.646 | 1.916 | 8.104 |
100×10_3 | 0.982 | 5.512 | 0.246 | 0.077 | 1.409 | 6.059 |
100×10_4 | 2.469 | 5.289 | 0.694 | 1.179 | 2.538 | 7.572 |
100×10_5 | 1.309 | 4.322 | 0.554 | 0.846 | 1.877 | 8.247 |
100×20_1 | 2.816 | 7.397 | 1.749 | 2.083 | 4.740 | 11.191 |
100×20_2 | 2.371 | 6.851 | 0.903 | 1.560 | 4.718 | 12.770 |
100×20_3 | 4.710 | 8.523 | 0.848 | 1.788 | 4.408 | 11.376 |
100×20_4 | 3.843 | 7.980 | 0.998 | 1.665 | 3.659 | 11.718 |
100×20_5 | 4.861 | 8.659 | 1.655 | 2.005 | 4.496 | 10.749 |
Mean | 1.742 | 4.341 | 0.641 | 0.929 | 2.130 | 6.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemtenneche, S.; Bensayah, A.; Cheriet, A. An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem. Systems 2023, 11, 389. https://doi.org/10.3390/systems11080389
Lemtenneche S, Bensayah A, Cheriet A. An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem. Systems. 2023; 11(8):389. https://doi.org/10.3390/systems11080389
Chicago/Turabian StyleLemtenneche, Sami, Abdallah Bensayah, and Abdelhakim Cheriet. 2023. "An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem" Systems 11, no. 8: 389. https://doi.org/10.3390/systems11080389
APA StyleLemtenneche, S., Bensayah, A., & Cheriet, A. (2023). An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem. Systems, 11(8), 389. https://doi.org/10.3390/systems11080389