Abstract
Estimation of Distribution Algorithms are a set of algorithms that belong to the field of Evolutionary Computation. Characterized by the use of probabilistic models to learn the (in)dependencies between the variables of the optimization problem, these algorithms have been applied to a wide set of academic and real-world optimization problems, achieving competitive results in most scenarios. However, they have not been extensively developed for permutation-based problems. In this paper we introduce a new EDA approach specifically designed to deal with permutation-based problems. In this paper, our proposal estimates a probability distribution over permutations by means of a distance-based exponential model called the Mallows model. In order to analyze the performance of the Mallows model in EDAs, we carry out some experiments over the Permutation Flowshop Scheduling Problem (PFSP), and compare the results with those obtained by two state-of-the-art EDAs for permutation-based problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bean, J.C.: Genetic Algorithms and Random Keys for Sequencing and Optimization. INFORMS Journal on Computing 6(2), 154–160 (1994)
Bengoetxea, E., Larrañaga, P., Bloch, I., Perchant, A., Boeres, C.: Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognition 35(12), 2867–2880 (2002)
Bosman, P.A.N., Thierens, D.: Crossing the road to efficient IDEAs for permutation problems. In: Spector, L., et al. (eds.) Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 219–226. Morgan Kaufmann, San Francisco (2001)
Bosman, P.A.N., Thierens, D.: Permutation Optimization by Iterated Estimation of Random Keys Marginal Product Factorizations. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 331–340. Springer, Heidelberg (2002)
Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on Estimation of Distribution Algorithms in Permutation-based Combinatorial Optimization Problems. Progress in Artificial Intelligence (2011)
Ceberio, J., Mendiburu, A., Lozano, J.A.: A Preliminary Study on EDAs for Permutation Problems Based on Marginal-based Models. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 609–616. ACM (2011)
Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems, NIPS 1997, vol. 10, pp. 451–457. MIT Press, Cambridge (1998)
Fligner, M.A., Verducci, J.S.: Distance based ranking Models. Journal of the Royal Statistical Society 48(3), 359–369 (1986)
Gupta, J., Stafford, J.E.: Flow shop scheduling research after five decades. European Journal of Operational Research (169), 699–711 (2006)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)
Lozano, J.A., Mendiburu, A.: Solving job schedulling with Estimation of Distribution Algorithms. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp. 231–242. Kluwer Academic Publishers (2002)
Mallows, C.L.: Non-null ranking models. Biometrika 44(1-2), 114–130 (1957)
Mandhani, B., Meila, M.: Tractable search for learning exponential models of rankings. In: Artificial Intelligence and Statistics (AISTATS) (April 2009)
Meila, M., Phadnis, K., Patterson, A., Bilmes, J.: Consensus ranking under the exponential model. In: 22nd Conference on Uncertainty in Artificial Intelligence (UAI 2007), Vancouver, British Columbia (July 2007)
Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996, Part IV. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)
Pelikan, M., Goldberg, D.E.: Genetic Algorithms, Clustering, and the Breaking of Symmetry. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000)
Robles, V., de Miguel, P., Larrañaga, P.: Solving the Traveling Salesman Problem with EDAs. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers (2002)
Romero, T., Larrañaga, P.: Triangulation of Bayesian networks with recursive Estimation of Distribution Algorithms. Int. J. Approx. Reasoning 50(3), 472–484 (2009)
Tsutsui, S.: Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 224–233. Springer, Heidelberg (2002)
Tsutsui, S., Pelikan, M., Goldberg, D.E.: Node Histogram vs. Edge Histogram: A Comparison of PMBGAs in Permutation Domains. Technical report, Medal (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ceberio, J., Mendiburu, A., Lozano, J.A. (2011). Introducing the Mallows Model on Estimation of Distribution Algorithms. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24958-7_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-24958-7_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24957-0
Online ISBN: 978-3-642-24958-7
eBook Packages: Computer ScienceComputer Science (R0)