Classification of Petrov Homogeneous Spaces
Abstract
:1. Introduction
2. Homogeneous Petrov Spaces
3. The Diagonalization of Group Vectors
- First version:
- ;
- .
- 2.
- Second version:
- 3.
- Third version:
- 4.
- Fourth version:
- 1.
- Since the method used in this paper for classifying non-equivalent sets of motion group operators differs somewhat from the method used in [17] (in particular, admissible coordinate transformations of the form (28) are used), some details of the computations in solving the structural equations are given below. Some of the results obtained have a simpler form than those given in Petrov’s book. In addition, I managed to complete the Petrov classification with two new homogeneous non-isotropic spaces of type .
- 2.
- For each non-equivalent set of group operators constructed using Killing vector fields, the classification of the reper vectors is given.
- 3.
- 4.
- In the final section, all non-equivalent sets of the group operators and are listed.
4. Solvable Groups
4.1.
4.2.
4.3. GroupG3(III)
4.4. GroupG3(IV)
4.5. GroupG3(V)
4.6. GroupG3(VI)
4.7. GroupG3(VII)
5. Unsolvable Groups
5.1. GroupG3(VIII)
- 2.
- Let us introduce the functions , which, depending on the value of the parameter , have the following form:
5.2. GroupG3(IX)
6. List of Obtained Results
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Trautman, A. Sur les l de conservation dans les espaces de Riemann. Colloq. Int. CNRS 1962, 91, 113–117. [Google Scholar]
- Trautman, A. Killing equations and conservation laws. Bull. L’Acad. Polonaise Sci. 1956, 4, 679–681. [Google Scholar]
- Bianchi, L. Sugli spazii atre dimmensioni du ammetonno un gruppo continuo di movimenti. Soc. Ital. Sci. Mat. 1897, 3, 11. [Google Scholar]
- Bianchi, L. Lezioni Sulla Teoria dei Gruppi Continui Finiti di Transformazioni; Universiti di Roma La Sapienza: Roma, Italy, 1918; 708p. [Google Scholar]
- Rimini, C. Sugli spazi a tre dimensioni che ammettono un gruppo a quattro parametri di movimenti. Annali della Scuola Normale Superiore di Pisa Classe di Scienze 1re Série 1904, 9, 1–57. [Google Scholar]
- Fubini, G. Sugli spacii a quatro dimensioni she ammetono di movimenti. Ann. Math. 1904, 3, 9. [Google Scholar]
- Friedmann, A. Uber die Moglichkeit einer Welt mit konstanter negativer Krummung des Raumes. Z. Physik. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Lemaitre, G. Un univers homog’ene de masse constante et de rayon croissant, rendant compte de la vitesse radiale de nebuleuses extra-galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Khan, S.; Yousaf, Z. Complexity-free charged anisotropic Finch-Skea model satisfying Karmarkar condition. Phys. Scr. 2024, 99, 055303. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Continuous Groups of Transformations; Princeton University Press: Princeton, NJ, USA, 1933; 319p. [Google Scholar]
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949; 306p. [Google Scholar]
- Petrov, A.Z.; Kaigorodov, V.R.; Abdullin, V.N. Classification of fields of general form by groups of motions. Izv. Vuzov Math. 1959, 6, 118–130. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; University of California: Oakland, CA, USA, 1969; 494p. [Google Scholar]
- Petrov, A.Z. New Methods in General Relativity; Nauka: Moscow, Russia, 1966; 496p. (In Russian) [Google Scholar]
- Kruchkovich, G.I. Classification of three-dimensional Riemannian spaces by groups of motions. UMN 1954, 9, 3–40. [Google Scholar]
- Kruchkovich, G.I. On motions in Riemannian spaces. Mat. Sb. (N.S.) 1957, 41, 195–220. [Google Scholar]
- Stephani, H.; Kramer, D.; Mac Callum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; 732p, ISBN 0521461367. [Google Scholar] [CrossRef]
- Obukhov, V.V. Classification of the non-null electrovacuum solution of Einstein-Maxwell equations with three-parameter abelian group of motions. Ann. Phys. 2024, 470, 169816. [Google Scholar] [CrossRef]
- Osetrin, K.; Filippov, A.; Osetrin, E. Wave-like spatially homogeneous models of Stäckel spacetimes (2.1) type in the scalar-tensor theory of gravity. Mod. Phys. Lett. 2020, 35, 2050275. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Osetrin, E.K.; Osetrina, E.I. Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C. 2022, 82, 894. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Osetrin, E.K.; Osetrina, E.I. Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV Universe. Eur. Phys. J. Plus 2022, 137, 856. [Google Scholar] [CrossRef]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Obukhov, V.V. Exact solutions of maxwell equations in homogeneous spaces with the group of motions G3(VIII). Symmetry 2023, 15, 648. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe 2022, 8, 245. [Google Scholar] [CrossRef]
- Obukhov, V.V.; Chervon, S.V.; Kartashov, D.V. Solutions of Maxwell equations for admissible electromagnetic fields, in spaces with simply transitive four-parameter groups of motions. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450092. [Google Scholar] [CrossRef]
- Magazev, A.A. Constructing a Complete Integral of the Hamilton-Jacobi Equation on Pseudo-Riemannian Spaces with Simply Transitive Groups of Motions. Math. Phys. Anal Geom. 2021, 24, 11. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys. 1996, 106, 3–15. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Yang-Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space. J. Phys. Conf. Ser. 2014, 563, 012004. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Noncommutative. Integrability of the Klein-Gordon and Dirac equation in (2+1)-dimentional spacetime. Russ. Phys. J. 2017, 59, 1956–1961. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theoretical Physics, Field Theory, 7th ed.; Science, C., Ed.; Nauka: Moskow, Russia, 1988; Volume II, 512p, ISBN 5-02-014420-7. (In Russian) [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in space-time with simply transitive four-parameter groups of motions. J. Math. Phys. 2023, 64, 093507. [Google Scholar] [CrossRef]
- Obukhov, V.V.; Osetrin, K.E. Classification Problems in the Theory of Gravitation; Tomsk State Pedagogical Universit: Tomsk, Russia, 2007; 265p, ISBN 978-5-89428-243-5. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Classification of Petrov Homogeneous Spaces. Symmetry 2024, 16, 1385. https://doi.org/10.3390/sym16101385
Obukhov VV. Classification of Petrov Homogeneous Spaces. Symmetry. 2024; 16(10):1385. https://doi.org/10.3390/sym16101385
Chicago/Turabian StyleObukhov, V. V. 2024. "Classification of Petrov Homogeneous Spaces" Symmetry 16, no. 10: 1385. https://doi.org/10.3390/sym16101385
APA StyleObukhov, V. V. (2024). Classification of Petrov Homogeneous Spaces. Symmetry, 16(10), 1385. https://doi.org/10.3390/sym16101385