Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Integrating Klein-Gordon-Fock equations in an external electromagnetic field on Lie groups

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the structure of the Klein-Gordon-Fock equation symmetry algebra on pseudo-Riemannian manifolds with motions in the presence of an external electromagnetic field. We show that in the case of an invariant electromagnetic field tensor, this algebra is a one-dimensional central extension of the Lie algebra of the group of motions. Based on the coadjoint orbit method and harmonic analysis on Lie groups, we propose a method for integrating the Klein-Gordon-Fock equation in an external field on manifolds with simply transitive group actions. We consider a nontrivial example on the four-dimensional group E(2)×ℝ in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  2. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Monogr. Math. Phys., Vol. 7), Cambridge Univ. Press, Cambridge (1982).

    Book  MATH  Google Scholar 

  3. D. V. Gal’tsov, Particles and Fields in the Vicinity of Black Holes [in Russian], Moscow State Univ. Press, Moscow (1986).

    Google Scholar 

  4. V. G. Bagrov and D. M. Gitman, Exact Solutions of Relativistic Wave Equations (Math. Its Appl. (Sov. Ser.), Vol. 39), Kluwer, Dordrecht (1990).

    Book  MATH  Google Scholar 

  5. V. G. Bagrov, M. C. Baldiotti, D. M. Gitman, and I. V. Shirokov, J. Math. Phys., 43, 2284–2305 (2002); arXiv:hep-th/0110037v3 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. V. Shapovalov and I. V. Shirokov, Theor. Math. Phys., 104, 921–934 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. I. Breev, I. V. Shirokov, and A. A. Magazev, Theor. Math. Phys., 167, 468–483 (2011).

    Article  Google Scholar 

  8. S. P. Baranovskii, V. V. Mikheev, and I. V. Shirokov, Russ. Phys. J., 45, 1033–1041 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. L. Kurnyavko and I. V. Shirokov, Theor. Math. Phys., 156, 1169–1179 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. W. van Holten, Phys. Rev. Lett., 75, 025027 (2007); arXiv:hep-th/0612216v2 (2006).

    Google Scholar 

  11. M. Visinescu, Modern Phys. Lett. A, 25, 341–350; arXiv:0910.3474v2 [hep-th] (2009).

    MathSciNet  ADS  Google Scholar 

  12. D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984); English transl., Consultants Bureau, New York (1986).

    MATH  Google Scholar 

  13. M. Goto and F. D. Grosshans, Semisimple Lie Algebras (Lect. Notes Pure Appl. Math., Vol. 38), Marcel Dekker, New York (1978).

    MATH  Google Scholar 

  14. A. A. Magazev, I. V. Shirokov, and Yu. A. Yurevich, Theor. Math. Phys., 156, 1127–1141 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Kirillov, Lectures on the Orbit Method [in Russian], Scientific Books (IDMI), Novosibirsk (2002).

    Google Scholar 

  16. A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow(1978); English transl. prev. ed. (Grundlehren Math. Wiss., Vol. 220), Springer, Berlin (1976).

    Google Scholar 

  17. M. M. Goncharovskiy and I. V. Shirokov, Theor. Math. Phys., 161, 1604–1615 (2009).

    Article  Google Scholar 

  18. J. Dixmier, Enveloping Algebras (Grad. Stud. Math., Vol. 11), Amer. Math. Soc., Providence, R. I. (1977).

    Google Scholar 

  19. I. V. Shirokov, Theor. Math. Phys., 123, 754–767 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, New York (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Magazev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 3, pp. 375–391, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magazev, A.A. Integrating Klein-Gordon-Fock equations in an external electromagnetic field on Lie groups. Theor Math Phys 173, 1654–1667 (2012). https://doi.org/10.1007/s11232-012-0139-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0139-x

Keywords

Navigation