Abstract
We investigate the structure of the Klein-Gordon-Fock equation symmetry algebra on pseudo-Riemannian manifolds with motions in the presence of an external electromagnetic field. We show that in the case of an invariant electromagnetic field tensor, this algebra is a one-dimensional central extension of the Lie algebra of the group of motions. Based on the coadjoint orbit method and harmonic analysis on Lie groups, we propose a method for integrating the Klein-Gordon-Fock equation in an external field on manifolds with simply transitive group actions. We consider a nontrivial example on the four-dimensional group E(2)×ℝ in detail.
Similar content being viewed by others
References
A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields [in Russian], Atomizdat, Moscow (1980).
N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Monogr. Math. Phys., Vol. 7), Cambridge Univ. Press, Cambridge (1982).
D. V. Gal’tsov, Particles and Fields in the Vicinity of Black Holes [in Russian], Moscow State Univ. Press, Moscow (1986).
V. G. Bagrov and D. M. Gitman, Exact Solutions of Relativistic Wave Equations (Math. Its Appl. (Sov. Ser.), Vol. 39), Kluwer, Dordrecht (1990).
V. G. Bagrov, M. C. Baldiotti, D. M. Gitman, and I. V. Shirokov, J. Math. Phys., 43, 2284–2305 (2002); arXiv:hep-th/0110037v3 (2001).
A. V. Shapovalov and I. V. Shirokov, Theor. Math. Phys., 104, 921–934 (1995).
A. I. Breev, I. V. Shirokov, and A. A. Magazev, Theor. Math. Phys., 167, 468–483 (2011).
S. P. Baranovskii, V. V. Mikheev, and I. V. Shirokov, Russ. Phys. J., 45, 1033–1041 (2002).
O. L. Kurnyavko and I. V. Shirokov, Theor. Math. Phys., 156, 1169–1179 (2008).
J. W. van Holten, Phys. Rev. Lett., 75, 025027 (2007); arXiv:hep-th/0612216v2 (2006).
M. Visinescu, Modern Phys. Lett. A, 25, 341–350; arXiv:0910.3474v2 [hep-th] (2009).
D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984); English transl., Consultants Bureau, New York (1986).
M. Goto and F. D. Grosshans, Semisimple Lie Algebras (Lect. Notes Pure Appl. Math., Vol. 38), Marcel Dekker, New York (1978).
A. A. Magazev, I. V. Shirokov, and Yu. A. Yurevich, Theor. Math. Phys., 156, 1127–1141 (2008).
A. A. Kirillov, Lectures on the Orbit Method [in Russian], Scientific Books (IDMI), Novosibirsk (2002).
A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow(1978); English transl. prev. ed. (Grundlehren Math. Wiss., Vol. 220), Springer, Berlin (1976).
M. M. Goncharovskiy and I. V. Shirokov, Theor. Math. Phys., 161, 1604–1615 (2009).
J. Dixmier, Enveloping Algebras (Grad. Stud. Math., Vol. 11), Amer. Math. Soc., Providence, R. I. (1977).
I. V. Shirokov, Theor. Math. Phys., 123, 754–767 (2000).
S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, New York (2000).
Author information
Authors and Affiliations
Corresponding author
Additional information
__________
Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 3, pp. 375–391, December, 2012.
Rights and permissions
About this article
Cite this article
Magazev, A.A. Integrating Klein-Gordon-Fock equations in an external electromagnetic field on Lie groups. Theor Math Phys 173, 1654–1667 (2012). https://doi.org/10.1007/s11232-012-0139-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11232-012-0139-x